

ProvideX

 Utilities and Subprograms

Version4.x
September 1997

This manual contains information on the ProvideX utilities and subprograms. Chapter 1 of this manual is
targeted at all ProvideX users while the rest of this manual is primarily targeted at the application
programmer and analyst.

The complete set of ProvideX manuals consists of:

 ProvideX™ Installation Guide
 ProvideX™ Language Reference Manual
 ProvideX™ User's Guide
 ProvideX™ Utilities and Subprograms
 ProvideX™ NOMADS and Data Dictionary
 ProvideX™ WindX
 ProvideX™ ODBC

Copyright 1986, 1990, 1994, 1995, 1996, 1997 by Sybex Ltd. (Ontario, Canada). All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopied, recorded or other, without prior written consent of
Sybex Ltd.

The software described in this manual is furnished to the user under a license for a specified number of
users and may be copied (with the inclusion of all copyright notices) only in accordance with the terms of
such a license.

Sybex Ltd. assumes no responsibility for any errors or omissions that may appear in this document.

Sybex Ltd.
#204-8920 Woodbine Ave

Markham, Ontario
Canada, L3R 9W9

Voice: (905) 470-1025
Fax: (905) 470-9349

Compuserve: 74777,3445

ProvideX is a trademark of Sybex Ltd., Ontario, Canada
Sybex is a Canadian registered trademark of Sybex Ltd., Ontario Canada
UNIX is a registered trademark of Bell Laboratories
MS-DOS and XENIX are registered trademarks of Microsoft Inc.
SCO is a registered trademark of The Santa Cruz Operation.
BBx and BASIS are registered trademarks of BASIS International Ltd.

Other brand or product names are the trademarks or registered trademarks of their respective holders.

ProvideX i

Contents

Chapter 1
Utility Programs__ 1

Screen Interface__1
Utility Subsystem main menu (**) __2
Built-in Calculator (*C) ___2
Keyed file Trace (*CHKKEY) ___4
Full Screen Program editor (*E)__4
Display of Open Files (*F) ___9
Display File information (*FI)__9
Generic File Maintenance (*FM) __10
Syntax Table edit Utility (*LEXEDIT)__11
Message file maintenance (*MSGUPD) ___12
Phone Directory (*P) __13
Main Utility Menu (*U) __13
System configuration sub-menu (*UC) ___14
Keyboard Configuration (*UCK) __15
Configure Link files (*UCL) __16
Configure system parameters (*UCP) __18
Directory Utilities Sub-menu (*UD) __19
Directory Delete (*UDD) ___19
Change to a different Directory (*UDG) __20
Make a new sub-directory (*UDM) __21
Directory Print (*UDP) __21
Change Directory name (*UDR)___22
Directory View (*UDV) __23
File Maintenance sub-menu (*UF) ___24
File Administration Sub-menu (*UFA) ___24
Keyed file integrity check (*UFAC) __25
Change file record count limit (*UFAM) __27
Recover Keyed file (*UFAR) __28
File Copy (*UFC) ___29
File Delete (*UFD) __30
File Data Erase (*UFE) __31
Display file Information (*UFI) ___31
Make a data file (*UFM) ___32
File print (*UFP) ___34
Change File name (*UFR) __35
File Update (*UFU) ___36
File View (*UFV) ___38
General Utility Sub-menu (*UG) __39
Mortgage Calculation program (*UGM) __39
Simple Spreadsheet Export (*UGS) __40

ii ProvideX

Program File sub-menu (*UP) __ 42
Program Bulk Search & Replace (*UPB) _______________________________________ 42
Program compare (*UPC) ___ 44
Program file Delete (*UPD) __ 45
Program file list (*UPL) ___ 45
Program file Create (*UPM) ___ 46
Change Program file name (*UPR) __ 47
Program Security (*UPS) __ 47

Chapter 2
Subprograms__49

Date Validation subprogram (*DATE) ___ 49
Generate File List (*FL.LST) ___ 50
Compare File Name to Mask (*FL.MTH)_______________________________________ 50
Return name of a work file (*FL.NME) __ 51
Generic Option Selector (*OPTSEL)___ 51
Convert program (*PG.CNV) __ 52
Popup Selection Box (*POPSEL)__ 53
Abort print file (*PR.ABT)___ 53
Close print file (*PR.CLS) ___ 53
Get print device (*PR.GET) __ 54
Open print file (*PR.OPN) ___ 54
Select print file (*PR.SEL) ___ 54
Restore current window (*SCR.RST) __ 55
Save window image (*SCR.SVE) __ 55
Item selection utility (*SELECT)__ 55
Input Validation routine (*VLDATE)__ 56

Chapter 3
System Programs/Files__57

System activation information (ACTIVATE.PVX)________________________________ 57
Hot-Key intercept program (*CONTROL) _____________________________________ 58
Device Drivers (*DEV) __ 58
Generic Error Handler (*ERROR) __ 59
On-line help display (*HELP) __ 59
System utility help information (*HELP.xx)_____________________________________ 60
On-line Program help display (*HELP.PRG)____________________________________ 60
On-line Program help password (*HELP.PWD) _________________________________ 60
Keyboard definition (*KYBRD.CFG/*KYBRD.STD)_____________________________ 61
Syntax tables (*LEXTBL.xx/*LEXDEF.xx) ____________________________________ 61
Message Library (*MLFILE.xx) __ 62
Parameter definitions (*PRMDEF.xx) ___ 62
On-line Query processor (*QUERY)___ 63
Query maintenance program (*QUERY.DEF) __________________________________ 63
SYSTEM START_UP (*START.UP) __ 64
Load Keyboard Definitions (*TTY)__ 64

ProvideX iii

Chapter 4
Windows Development Kit___ 65

Overview of Subprograms and Objects___65
Push buttons (**BUTTON) ___68
Check Boxes (**CHKBOX)___69
Check List (**CHKLST) ___70
Combo boxes (**COMBOX)__71
Control buttons (**CTLBTN)___72
Drop boxes (**DRPBOX) __74
Error Box (**ERROR.BOX)__75
Horizontal movement processor (**HMOVE.CHK) ______________________________75
Horizontal Scroll Bar (**HSCRBR)__76
Input Box (**INPBOX) __77
List boxes (**LSTBOX) ___78
Pull-down menus (**MENU)__79
Open File (**OPEN.FLE) __81
Option Box (**OPTION.BOX) __83
Prompt Box (**PROMPT.BOX)___83
Variable List boxes (**VARBOX) ___84
Vertical movement processor (**VMOVE.CHK) _________________________________85
Vertical scroll Bar (**VSCRBR) __85
Warning Box (**WARN.BOX) __87
Window Horizontal scroll Bar (**WHSCRL) ____________________________________87
Window Vertical scroll Bar (**WVSCRL) ______________________________________88

Utilities and Subprograms Subprogram

ProvideX 1

Chapter 1
Utility Programs
This section of the manual describes the utilities that are included with the ProvideX system. These
utilities provide the ability to create and maintain files, programs, and directories. They also provide
built-in functions such as a calculator and a telephone directory.

All system utilities start with an asterisk (*) and are maintained in the ProvideX 'Library'. By default,
this library is defined as the sub-directory 'lib' in the directory containing the PVX executive. If
desired, the path to the ProvideX utilities may be altered by setting the environment variable PVXLIB
to the name of directory where the utilities are kept.

All references to system utilities, and all other references to any file residing in the ProvideX library
(utilities, subprograms, files, etc.) whose first character begins with an asterisk, are case insensitive.
A call to either "*U" or "*u" will access the same utility.

The majority of the utilities are available by a function or control key sequence. To access the
utilities, press function key 5 (default value). This default function key can be changed by the system
configuration utility *UCK.

Less common utilities and those requiring detailed knowledge of ProvideX internals, including
changing the message library and language tables, must be run manually.

Screen Interface

Most of the utilities use the top two lines of the screen for input. The first line describes the action
and the second line is used for either input entry or option selection. In cases where the input allows
for the selection of one of a variety of options, each option will be displayed on the second line with
the most common (or least destructive) option appearing first. Type the first letter of the option or use
the arrow keys to highlight the desired option and press ENTER.

Throughout this document, examples showing the top two lines have been shaded with the top, left
and right sides boxed in. An example of an option line with 6 values follows:

Selection:
 Calculator Files Phone Utilities Edit Quit

NOTE: All input to the utilities should be terminated by an ENTER key, a single character code, or a

function key. The ENTER key is marked RETURN on some keyboards, either one being
acceptable.

NOTE: All utilities support the Mouse for selecting options.

Subprograms Utilities and Subprograms

2 ProvideX

**
Utility Subsystem main menu

Description:
This is the main utility subsystem menu. Typically, it is called by the input intercept routine
"*CONTROL" when a CTL value of -1 is received. It can also be CALLed or RUN directly.

Selection:
 Calculator Files Phone Utilities Edit Quit

Select:
Calculator to run the Built-in calculator. (*C)
Files to run the display of open files. (*F)
Phone to run the Phone directory utility. (*P)
Utilities to run the top level of the System utilities. (*U)
Edit to run the program full screen editor. (*E)
Quit to exit the utility.

Unable to process. Try another selection

This message indicates that an unrecoverable error occurred in a subordinate utility program.

*C
Built-in Calculator

Description:
This utility provides a built-in calculator function within ProvideX. It allows for the addition, subtraction,
multiplication, and division of numbers. The display includes a 'TAPE' column that lists the last few
entries.

Key Action
0-9 and . These numbers are used to enter values
+ Adds the next entry to the total
- Subtracts the next entry from the total
/ Divides the current total by the next entry
* Multiplies the current total by the next entry
ENTER Ends entry and prepares for next entry. If hit twice in a row, a subtotal is entered in the TAPE.

Key Action

C Clears the current total.
E Erases the current entry field
Q Quits the calculator
R Places the current total value into the input buffer, thereby returning it to the program currently running.
S Inserts a Sub-Total in the TAPE listing
T Totals the input and inserts it in the TAPE listing.

Utilities and Subprograms Subprogram

ProvideX 3

*C – Built-in Calculator (continued):

Input to this utility is done in 'Polish notation', which means that the value is entered first, then the
operation. This is based on the standard method employed by automatic adding machines.
Example:
To multiply 5 and 10 together:

 Press C - to clear the calculator
 5 - to enter 5
 ENTER - to end the entry of 5
 1
 0 - to now have 10 in the entry field
 * - to multiply the numbers

NOTE: This utility supports the Mouse.

Subprograms Utilities and Subprograms

4 ProvideX

*CHKKEY
Keyed file Trace

Description:

This utility is used to trace a key file chain to determine the tree structure for a given record. Its
purpose is to aid in the repair of a damaged key file.

Note: This program is not accessible directly from the standard utility menus. To invoke these

programs issue a RUN or CALL directive.

Once invoked, enter the name of the file to be processed, the key number to trace, and the key value
desired. The program will walk the file's key tables and display each entry as it is encountered.

NOTE: To use the information that this utility provides, requires a thorough understanding of the

internals of ProvideX keyed file structures. This is beyond the scope of this manual. Please
contact your local ProvideX distributor if you need additional technical information regarding
keyed file structures.

*E
Full Screen Program editor

Description:
This utility provides a full screen editor for program development and maintenance. It edits the
current 'main-line' program (the program at level 1). To invoke the utility, select "E" from the main
utilities menu or enter CALL "*E".

'xxxxxx' is running. Terminate it (Y/N)

This message is displayed if the editor was invoked while a program was running. Enter a 'Y' to
terminate it or enter an 'N' to abandon the editor session. The editor cannot edit a program that is
currently running.

The editor displays the current program on the screen. The program may be viewed and edited
directly on the screen through the use of the cursor movement keys (Up arrow, Down arrow, Page
Up, Page Down, Home, End). If active, the mouse may be used. Any Program compile errors are
displayed on the screen below the lines on which they occur.

The top of the screen contains the editor menu.

F1-Text edit F2-Line edit F3-Program F4-Quit

Press:
F1 to select the text editor "String Functions" which provide the ability to search,

replace, copy, and paste strings.

Utilities and Subprograms Subprogram

ProvideX 5

*E – Full screen program editor (continued):

F2 to select the line editor "Line Functions" which provide the ability to insert

lines, go to a line, delete line(s), copy, and paste lines. F2 also provides
access to an external Text Line library.

F3 to select the Program functions which include saving, loading, renumbering,
and starting a new program.

 F4 to exit the editor. The edited program will remain the current
 mainline program after exiting.

String functions
 Find Replace Snip Copy Paste Quit

Select:
Find to locate a string within the program.
Replace to replace a string with another.
Snip to highlight and place a string into the copy buffer.
Copy to highlight and copy a string into the copy buffer.
Paste to insert the copy buffer into a line of code.
Quit to exit the utility.

Enter string to find

If FIND is selected, enter the string to locate and press ENTER.

Find more occurrences
 No Yes Quit

Select:
No to stop searching.
Yes to continue.
Quit to exit the utility.

String not found! Press return to continue.

The above message is displayed if the string was not found.

Enter string to be replaced

If REPLACE is selected, enter the string to be found and changed.

Replace 'xxxxxx' with what?

Enter the new value for the string. Once entered, the editor will start to scan for the original string
within the program and highlight it.

Replace this occurrence?
 Yes No All Quit

Subprograms Utilities and Subprograms

6 ProvideX

*E - Full screen program editor (continued):

Select:

Yes to replace the highlighted occurrence.
No to skip this replacement.
All to have the system automatically replace this and all subsequent

occurrences of the specified string.
 Quit to exit the utility.

Highlight string to snip and press <Return>

If SNIP is selected, highlight the text to be moved to the copy buffer. The cursor keys (or mouse) are
used to highlight text starting from the point the SNIP option was selected, up to the point the ENTER
key is pressed. Once ENTER is pressed, the string highlighted is moved to the copy buffer and
removed from the program.

Highlight strings to copy and press <Return>

If COPY is selected, highlight the text to be copied into the copy buffer. The cursor keys (or mouse)
are used to highlight text starting from the point the COPY option was selected, up to the point the
ENTER key is pressed.
:

Line functions
 Goto Insert Delete Snip Copy Paste Move Undo Library Quit

Select:
Goto to move the cursor to a specific line.
Insert to start inserting lines.
Delete to highlight and delete a series of lines.
Snip to highlight and move a series of lines into the copy buffer.
Copy to highlight and copy a series of lines into the copy buffer.
Paste to insert the contents of the copy buffer into the program at this point.

Inserted lines will have all internal line references adjusted.
Move to highlight and move lines from one point to another.
Undo to reset the last changed line back to what it was. This is effective only on

the last single line changed.
Library to access the code library.
Quit to exit the utility.

Line number

If GOTO is selected, enter the line number of the line to go to.

Enter line number to start insertion at

If INSERT is selected, enter the starting line number. When inserting lines, the system automatically
displays new line numbers to allow the entry of the contents of the line. This continues until a null line
is entered or another system command is executed. If required, the editor automatically renumbers
the program allowing new lines to be entered.

Utilities and Subprograms Subprogram

ProvideX 7

*E - Full screen program editor (continued):

Highlight lines to delete and press <Return>

If DELETE is selected, highlight the lines to be removed. The cursor keys (or mouse) are used to
highlight starting from the line where the DELETE option was selected on, up to and including the line
where the ENTER is pressed.

Highlight line to snip and press <Return>

If SNIP is selected, highlight the lines to be moved to the copy buffer. The cursor keys (or mouse)
are used to highlight the lines, starting from the line the SNIP option was selected on, up to and
including the line where the ENTER is pressed.

Highlight lines to copy and press <Return>

If COPY is selected, highlight the lines to be copied to the copy buffer. The cursor keys (or mouse)
are used to highlight the lines, starting from the line the COPY option was selected on, up to and
including the line where the ENTER is pressed.

Highlight lines to move and press <Return>

If MOVE is selected, highlight the lines to be moved. The cursor keys (or mouse) are used to
highlight the lines, starting from the line the MOVE option was selected on, up to and including the
line where the ENTER is pressed.

Position to line desired and press <Return>

Once the lines to MOVE have been highlighted, position the cursor to the line before which the lines
are to be inserted and press ENTER.

Cannot move -- Program too large -- Press <Return>

If the movement of lines causes an overflow in the line numbers (exceeding 65000), the above
message appears.

If LIBRARY is selected, the editor allows you to copy elements of the program to a 'Line Library' or
the insertion of lines from a library into the program. A Line Library consists of a ProvideX keyed file
where lines of code are stored. Each group of lines in the library has a name, which is used to
identify the contents.

The name of the library must be identified the first time that the Line Librarian component of the editor
is used.

Name of program text library

Enter the name of the file containing the text library. If the library does not exist, the editor creates it.

Text library functions
 Copy-to-library Paste-from-library Set-library Quit

Subprograms Utilities and Subprograms

8 ProvideX

*E - Full screen program editor (continued):

Select
 Copy-to-library to highlight a series of lines and copy them to the library.
 Paste-from-library to insert a series of lines from the library.
 Set-library to change the library file name.
 Quit to exit the utility.

Highlight text to copy to library
Name of library element to write to: _

If COPY_TO_LIBRARY is selected, enter the name to be assigned to the library entry that will receive
the highlighted lines, then highlight the lines as in standard line COPY above.

Name of library element to paste _

If PASTE_FROM_LIBARY is selected, enter the name of the entry in the text library which is to be
inserted. The lines are inserted before the current line in the program.

General program functions
 Save Load Renumber Delete Quit

Select:
Save to save the program.
Load to load a different program for editing.
Renumber to renumber the current program.
Delete to delete the complete program and start from scratch on a new one.
Quit to exit the utility.

Name of program to save to

If SAVE is selected, enter the name of the program file to be saved to. By default, the program will be
saved back onto the current file.

What program do you want to load

If LOAD is selected, enter the name of the program file.

'xxxxxx' is not a program -- Try again

The above message appears if LOAD is selected for a non-program file.

No such program

The above message appears if LOAD is selected for a non-existent file.

Utilities and Subprograms Subprogram

ProvideX 9

*F
Display of Open Files

Description:
This utility is used to display all the files currently open. It can be selected from the main utility menu
(**). Once invoked, this program will display the open files with their file number, type, record size
information and full path name.

If more files are open than will fit on one screen, the following question is asked:

More open files to follow. Continue?
 Yes No Quit

If all open files have been displayed, the following is asked:

Open files display. Re-display?
 No Yes Quit

In either case...
Select:

No to stop the display.
Yes to continue display.
Quit to exit the utility.

*FI
Display File information

Description:
This combination utility program and subprogram is used to display the current information about a
file. If CALLed as a subprogram, the file name passed in the first argument is used, otherwise, the
user is prompted (via **OPEN.FLE) to enter the name of the file.
Calling sequence:
CALL "*FI", IN_PTH$
Where:

IN_PTH$ must contain the name of the file for which the information is to be displayed.

Note: This program is not accessible directly from the standard utility menus. To invoke this

program issue a RUN or CALL directive.

Subprograms Utilities and Subprograms

10 ProvideX

*FM
Generic File Maintenance

Description:
This program is used to display and update a keyed data file. It provides a spreadsheet-like format
for the display and update of the file. Each field of a record is a column with each record being a
single row. The menu allows column formats, column widths, and search criteria to be specified.

This utility can be called as a subprogram by passing it the name of the file to process. The calling
sequence is:

 CALL "*FM", IN_PTH$
Where:

IN_PTH$ is the name of the file to present.

NOTE: This program is not accessible directly from the standard utility menus. To invoke this

program, issue a RUN or CALL directive.
 This is a preliminary version of the utility and is representative of the next generation of

ProvideX tools. It has been included with the current version of the utility set due to its
unique capabilities and to serve as an example in its use of Mouse and scroll bars.

NOTE: This utility supports the Mouse.

Utilities and Subprograms Subprogram

ProvideX 11

*LEXEDIT
Syntax Table edit Utility

Description:
This utility allows the systems programmer to modify the internal ProvideX syntax tables thereby
changing the names of the various directives, system variables, functions, mnemonics and options.

The modification of the syntax table is a three-step process:

 1) Define new keywords, functions, etc.
 2) Generate the syntax table from the new information.
 3) Load the new table.

These steps can be accomplished through the options available in the File menu. To access this
menu, press <F2> and select File:
Select:

Open to add, modify, or delete keyword expressions. (See 'Modifying a syntax
table').

Generate to generate a new version of the syntax table.
Load to load a syntax table for use.
Print to print a report which lists all of the keywords sorted in either keyword or

object code sequence. The report includes information about output
attributes (leading, trailing, and embedded spaces), and whether the
keyword can be used as a label or as a variable. Alternate keywords include
corresponding primary keywords.

About to view copyright information.
Quit to exit the utility.

*LEXEDIT is primarily designed to support multilingual systems. When accessing various menu
options, you must first identify which language file to process. A language file is identified by a
language code, which may be up to three characters long (For example, the code for the standard
English lexicon is 'EN').

Subprograms Utilities and Subprograms

12 ProvideX

*LEXEDIT - syntax table edit utility (continued):

At the keyword prompt, enter the word or expression which is to be added, modified or deleted. If a
new keyword is to be added, the related keyword (i.e. a keyword to which the new one corresponds)
must be entered. The program will then display the following information:

If the keyword is a primary keyword (i.e. the one which is displayed in program listings), the
output attributes (leading, trailing, embedded spaces) can be modified. Alternate (non-primary)
keywords can be changed to primary keywords, but this results in the original primary keyword being
changed to an alternate keyword. Only alternate keywords may be deleted.

Note: This program is not directly accessible from the standard utility menus. To invoke this

program issue a RUN or CALL directive.

*MSGUPD
Message File Maintenance

Description:
This utility program is used to update the message library. The ProvideX message library contains all
of the "canned" text for error messages used by ProvideX and the default text strings used in the
generation of alphanumeric day and month names used by the DTE function.

Utilities and Subprograms Subprogram

ProvideX 13

*MSGUPD – Message file maintenance (continued):

The utility initially asks for the language code of the message library file to be updated. The language
code is determined from the system Environment variable "LANG". It is used to define the file name
by appending it to the name "*MLFILE.". If no environment variable is defined, ProvideX uses a
default of "EN". Once the language has been determined, enter the error message number, then edit
its associated text.

Note: This program is not accessible directly from the standard utility menus. To invoke this

program issue a RUN or CALL directive.

*P
Phone Directory

Description:
This utility allows the user to maintain a list of public and private phone numbers. Each entry in the
phone directory consists of a person's name, company, and telephone number.

To enter new names into the phone directory, press the ENTER key. The system presents a window
for the entry of the person's name, company, phone number and an option to indicate whether this
phone number is Public (available to all users) or Private (available to you only).

To search for a name, select the search mode by pressing F1 or F2, then enter the name desired.
Press ENTER to begin the search.

*U
Main Utility Menu

Description:
This utility program displays the major categories of utilities. The user selects a category from the list
presented and a subsequent menu (or program) is run.

Subprograms Utilities and Subprograms

14 ProvideX

*U – Main utility directory (continued):

System utilities:
 Files Directories Programs Configuration General Quit

Select:

Files to create, delete, rename, view, update or otherwise manipulate data files.
(*UF)

Directories to create, delete, rename, or view directories. (*UD)
Programs to create, delete, rename, edit, list or otherwise manipulate program files.

(*UP)
Configuration to alter the configuration of the ProvideX environment. (*UC)
General to access the general utilities, such as the Mortgage computation program

and the Spreadsheet export program. (*UG)
Quit to exit the utility.

Unable to process. Try another selection

This message indicates that an unrecoverable error occurred in a subordinate utility program.

*UC
System Configuration Sub-menu

Description:
This utility provides the configuration Sub-menu.

Configuration utilities:
 Linkfiles Keyboard Parameters Quit

Select:

Linkfiles to define/update link files. These Linkfiles are used to establish a
relationship between a file name in a program and the physical device. For
example, a Linkfile 'LP' may be made to link to the real file '/dev/lp'. (*UCL)

Keyboard to define the keyboard input control sequences that your terminal will send.
(*UCK)

Parameters to view and adjust any of the ProvideX system parameters. (*UCP)
Quit to exit the utility.

Unable to process. Try another selection

This message indicates that an unrecoverable error occurred in a subordinate utility program.

Utilities and Subprograms Subprogram

ProvideX 15

*UCK
Keyboard Configuration

Description:
This utility is used to define the input sequences that will be received from the various terminal
keyboards. It allows editing or the re-assignment of the key sequences by manually pressing the
keys on the keyboard rather than having to look them up in the terminal technical manual.

All keyboard input sequences are maintained by terminal type and optionally, by user-id. This allows
custom implementations for specific users.

Keyboard definition utility for xxxxxx. Is this specific to xxxxxx
 No Yes Quit

Select:
No if the keyboard definition will not be specific to the current user-id.
Yes if the keyboard definition will be specific to the current user-id.
Quit to exit the utility.

The system presents a screen to define or alter the key input sequences for your terminal. The
screen display consists of four columns each with up to twenty key labels. Initially, the key label F1 is
highlighted. To change the input sequence that F1 represents, press the ENTER key and then press
the key (or keys) on the terminal that are to correspond to F1.

To select a different key to change, press U to move up, D to move down, R to move right, or L to
move left. The Up, Down, Left, and Right arrows may also be used, once they have been defined.
Pressing Q will quit the utility.

Subprograms Utilities and Subprograms

16 ProvideX

*UCK - Keyboard configuration (continued):

To restore all the key sequences to their default (system standard) definition, press *. Pressing *
resets the terminal key definitions to the ProvideX defined standard, if one exists.

Are you sure you wish to restore from system default value?
 No Yes Quit

Select:
No to abandon the restore command.
Yes to continue with the restore.
Quit to exit the utility.

If a duplicate key input sequence is detected, the utility issues the following message.

Already defined as function 'xxxxxx' Cancel old definition?
 Yes No Quit

Select:
Yes to remove the old definition for the key pressed.
No to re-enter the keystroke.
Quit to exit the utility.

*UCL
Configure Link files

Description:
This utility is used to create and maintain device, file, and printer link files and for the specification of
the link's path name and device driver.

'Link' files utility
Name of 'Link' file? _

Enter the name of the Link file to create/update.

File already exists and is not a link!!

The above error message is displayed if a non-link file of the same name exists.

The following message is displayed if a link file of the same name exists.

Do you want to delete 'xxxxxx'
 No Yes Quit

Select:
No to maintain and modify the link file.
Yes to delete the link file.
Quit to exit the utility.

Utilities and Subprograms Subprogram

ProvideX 17

*UCL - Configure link files (continued):

'xxxxxx' has been erased

The above message is displayed to confirm that the link file has been deleted.

Unable to delete:xxxxxx

The above message indicates that an error occurred during the delete procedure. The most common
cause is lack of permissions.

The following message is displayed if the link file did not already exist.

File 'xxxxxx' does not exist. Create?
 Yes No Quit

Select:
Yes to create the link file.
No to re-enter a different link file name.
Quit to exit the utility.

'xxxxxx' links to...
Name of file/device: _

Enter the name of the file or device that this link file will point to.

What type of link is 'xxxxxx'
 File Printer Device Quit

Select:
File if the link points to a file.
Printer if the link points to a printer.
Device if the link points to a device of another type.
Quit to exit the utility.

If PRINTER is selected, the utility asks how the printer is attached to the system.

Is this printer connected via a Terminal Aux port?
 No Yes Quit

Select:
No to indicate that this printer is connected directly to the computer system, or the

operating system device drivers make it appear so.
Yes to indicate the device is attached to a terminal and all output must have a Printer

select command before the transmission and a de-select command after.
Quit to exit the utility.

Once the type and path name have been determined for the link file, select the device type from the
list presented. Use the Up/Down arrow keys to change the highlight on the screen and press
ENTER.

Subprograms Utilities and Subprograms

18 ProvideX

*UCL - Configure link files (continued):

Link file 'xxxxxx' created to xxxxxx (xxxxxx)
Name of 'Link' file? _

The above message indicates that the link file was created. If you wish to create more link/device
files enter the name of another link file to create or change.

*UCP
Configure system parameters

Description:
This utility is used to alter the current system parameters. It displays all current parameters in the
system and allows them to be changed.

Utilities and Subprograms Subprogram

ProvideX 19

*UCL - Configure link files (continued):

Use the Up/Down/Right/Left arrow keys on the keyboard to select the parameter to change. Then
press ENTER. Parameters, which have only an On/Off state, will toggle their status when selected.
Parameters which have values associated with them ask for a new value when selected.

NOTE: For information on the various system parameters, see the ProvideX Language Reference

manual.

*UD
Directory Utilities Sub-menu

Description:
This is the Directory utilities sub-menu program. It presents the directory functions available within the
system and allows the user to chose one.

Directory utilities:
 Make Delete Rename Print View Goto Quit

Select:
Make to create new directories. (*UDM)
Delete to delete existing directories. (*UDD)
Rename to change the name of an existing directory. (*UDR)
View to view the names and characteristics of the files contained in a directory.

(*UDV)
Print to print the names and characteristics of the files contained in a directory.

(*UDP)
Goto to change to a specific directory. (*UDG)
Quit to exit the utility.

Unable to process. Try another selection

The above message indicates that an unrecoverable error occurred in a subordinate utility program.

*UDD
Directory Delete

Description:
This utility deletes a sub-directory.

Delete directory utility
Directory to delete: _

Enter the name of the directory to delete

Subprograms Utilities and Subprograms

20 ProvideX

*UD - Directory utilities sub-menu (continued):

'xxxxxx' is not a directory

The above message indicates that the name entered is not the name of a valid directory.

Are you sure you wish to delete 'xxxxxx'
 No Yes Quit

Select:
No to abandon the deletion request.
Yes to delete the directory.
Quit to exit the utility.

Delete sub-ordinate files/directories if present?
 No Yes Quit

Select:
No to delete the specified directory. The directory MUST be empty before it can

be deleted.
Yes to delete all files and subordinate directories in the specified directory.
Quit to exit the utility.

Directory 'xxxxxx' deleted. More deletes?
 No Yes Quit

Select:
No if there are no more deletes to be performed.
Yes to delete other directories.
Quit to exit the utility.

*UDG
Change to a different Directory

Description:
This utility changes the current directory.

Goto directory utility (Change working directory)
Directory to goto (*=Starting directory): _

Enter the name of the directory to become the 'Current' directory. Enter an asterisk (*) to return to the
directory that you were in when you started ProvideX.

'xxxxxx' is not a directory!

The above message appears if the name entered is not the name of a directory.

No such directory!

The above message appears if the name entered does not exist.

Utilities and Subprograms Subprogram

ProvideX 21

*UDM
Make a new sub-directory

Description:
This utility creates new directories.

Make a directory utility
Directory to make: _

Enter the name of the directory to be created.

Directory 'xxxxxx' already exists

The above message is displayed if a file or directory of the name specified already exists.

Directory 'xxxxxx' has been made. More to make?
 No Yes Quit

Select:
No if no more directories are to be made.
Yes to make more directories.
Quit to exit the utility.

*UDP
Directory Print

Description:
This utility program prints the contents of a directory on a printer. This listing contains file name, type,
record size, key information and other related data.

Print directory utility
Directory to print: _

Enter the name of the directory to print.

What type of printout?
 Detailed Summary Quit

Select:
Detailed to print file information such as file type, key size, etc.
Summary to print file names only.
Quit to exit the utility.

Sort report by filename?
 Yes No Quit

Subprograms Utilities and Subprograms

22 ProvideX

*UPD – Directory Print (continued):
Select:

Yes if the printout is to be sorted by file name.
No if the printout is not to be sorted.
Quit to exit the utility.

Print other directories?
 No Yes Quit

Select:
No if no more directories are to be printed.
Yes to print more directories.
Quit to exit the utility.

*UDR
Change Directory name

Description:
This utility renames a directory. Not all operating systems support this functionality.

Directory rename utility
Directory to rename: _

Enter the name of an existing directory to rename.

'xxxxxx' is not a directory

The above message is displayed if there is no directory with the name specified.

Renaming directory 'xxxxxx'
Enter new name: _

Enter the new name for the directory.

Directory 'xxxxxx' now 'xxxxxx'. More renames?
 No Yes Quit

Select:
No if there are no more directories to rename.
Yes to rename other directories.
Quit to exit the utility.

Utilities and Subprograms Subprogram

ProvideX 23

*UDV
Directory View

Description:
This utility allows the viewing of the file names within a directory. The display consists of the file
names, type, and other related information such as key size, record size, etc.

View directory utility
Directory to view: _

Enter the name of the directory to view.

'xxxxxx' is not a directory

The above message is displayed if the name entered is not a valid directory.

What type of display?
 Detailed Summary Quit

Select:
Detailed to display file information such as file type, key size, etc..
Summary to display file names only.
Quit to exit the utility.

Partial listing. Continue display
 Yes No Quit

Select:
Yes to continue the display.
No to terminate the display.
Quit to exit the utility.

Do you wish to view more/other directories
 No Yes Quit

Select:
No if there are no further directories to display.
Yes to display other directories.
Quit to exit the utility.

Partial listing. Continue display
 Yes No Quit

-or-
Partial list of alt. keys. Continue display
 Yes No Quit

Select:
Yes to continue display.
No to terminate display.
Quit to exit the utility.

Subprograms Utilities and Subprograms

24 ProvideX

*UF
File Maintenance sub-menu

Description:
This utility program allows the user to select a sub-function of the file maintenance portion of the
system utilities.

File system utilities:
 Make Delete Rename Print View Update Info Copy Erase Admin Quit

Select:
Make to create a new file. (*UFM)
Delete to delete a file. (*UFD)
Rename to change the name of a file. (*UFR)
Print to print the contents of a file. (*UFP)
View to view the contents of a file. (*UFV)
Update to change the contents of a file. (*UFU)
Info to obtain file information such as type, record size, keys, etc.. (*UFI)
Copy to copy the contents of a file. (*UFC)
Erase to clear the contents of a file. (*UFE)
Admin to access the file administration sub-menu. This sub-menu contains utilities

to change the file maximum record counts, validate the integrity of a file, and
recover a corrupted file. (*UFA)

Quit to exit the utility.

Unable to process. Try another selection

The above message indicates that an unrecoverable error occurred in a subordinate utility program.

*UFA
File Administration Sub-menu

Description:
This utility program provides the file administration sub-menu .

File administration utilities:
 Maximum_size Check Re-construct Quit

Select:
Maximum_size to change the maximum size of a file. (*UFAM)
Check to verify the integrity of a keyed file. (*UFAC)
Re-construct to repair a damaged keyed file. This utility copies each physical record into a

holding file then re-creates and re-loads the keyed file. (*UFAR)
Quit to exit the utility.

Unable to process. Try another selection

The above message indicates that an unrecoverable error occurred in a subordinate utility program.

Utilities and Subprograms Subprogram

ProvideX 25

*UFAC
Keyed file integrity check

Description:
This utility is used to verify the integrity of the key structure of a keyed data file. Typically, it would be
used after some form of hardware or operating system malfunction where the writing of data to the
disk drives was is unable to be guaranteed successful. This utility can also be CALLed as a
subprogram to verify a file.
Calling sequence:

 CALL "*UFAC", CALL_FILE$, CALL_DSP
Where:

CALL_FILE$ The file to be verified.
CALL_DSP If this argument is set to 1, the utility will provide a status display as it is

verifying the file. If zero (0), no display is provided.
Check keyed file
Name of file: _

Enter the name of the file to be verified.

Pause at each error?
 Yes No Quit

Select:
Yes to stop after each error is detected.
No to continue processing and simply report the total number of errors at the

end of the verification run.
Quit to exit the utility.

Display index trace?
 Yes No Quit

Select:
Yes to have the utility display the various keyed index entries as they are being

verified. While this display is helpful in detecting a problem, but it can be
very time consuming on a slow terminal.

No to prevent a trace of the index entries.
Quit to exit the utility.

Log errors to printer?
 No Yes Quit

Select:
No to display the errors.
Yes to display and print an error log.
Quit to exit the utility.

Subprograms Utilities and Subprograms

26 ProvideX

*UFAC – Keyed file integrity check (continued):
Errors:
The following are the errors detected by the file integrity check utility:

Key/record mismatch - Idx (xxxxxx) - Rec (xxxxxx)
 Continue Quit

The key table entry and the contents of the record do not match. Select 'Continue' to proceed.

Key block @xxxxxx has invalid header address of xxxxxx
 Continue Quit

When reading the key tables, a disk block was read whose key block header address does not match
that of the block that was requested.

Record count error - xxxxxx - xxxxxx of xxxxxx records
 Continue Quit

After verifying the key tables, the total count of records in the file found by keys, does not match the
number of records expressed in the file header.

Deleted record - address xxxxxx
 Continue Quit

A deleted record was detected while reading using the key table. This should not occur since deleted
records have their associated key table entries removed.

Key [xxxxxx] at unknown address xxxxxx does not exist
 Continue Quit

A key table entry pointed to a non-existent record address.

Free record link list loop
 Continue Quit

There is a loop within the free (deleted) record list.

Key block @xxxxxx has invalid type. Should be $xxxxxx$ was $xxxxxx$
 Continue Quit

When reading the key tables, a disk block was read whose key block header type indicator was
invalid.

Key block @xxxxxx has invalid length.
 Continue Quit

When reading the key tables, a disk block was read whose key block header size field was invalid.

Record @xxxxxx has invalid length
 Continue Quit

The data record read has an invalid record size field.

Utilities and Subprograms Subprogram

ProvideX 27

*UFAC - Keyed file integrity check (continued):

Record @xxxxxx has invalid index
 Continue Quit

While verifying a variable length record file, the record address (which includes data block number
and record number within the block) indicated a non-existent record in the data block.

Record @xxxxxx has invalid offset
 Continue Quit

While verifying a variable length record file, the offset to the record within the data block was invalid.

NOTE: In general, if an error is detected, use the utility "*UFAR" to attempt to recover the data. If

this fails restore the file from a backup.

*UFAM
Change file record count limit

Description:
This utility alters the maximum number of records that may be placed on a file. Normally, ProvideX
files are created with no upper limit to the number of records other than disk capacity. During the
development cycle, it may be advantageous to set a limit to avoid allocating disk space to a file if a
program goes into a loop.

Adjust maximum number of records
Name of file: _

Enter the name of the file to be changed.

Adjust maximum number of records
Enter maximum number of records ('*'=no limit) _

Enter the new maximum number of records for the file. Enter an asterisk (*) to set no limit.

Adjust maximum number of records
Enter maximum record size:(current size)

Enter the new maximum record size (increase only, to decrease you must still reload the data file.)

Record adjustment complete for 'xxxxxx'. Adjust another file?
 No Yes Quit
Select:

No if there are no other files to adjust.
Yes to change the maximum record count on other files.
Quit to exit the utility.

Subprograms Utilities and Subprograms

28 ProvideX

*UFAR
Recover Keyed file

Description:
This utility is used to recover a damaged keyed file. It reads all of the records in a data file by record
index and copies them to a holding file. Once this is complete, the original file is cleared and the
holding file records are rewritten back to the original file.

KEYED/DIRECT file key reconstruction utility
Name of KEYED/DIRECT file: _

Enter the name of the file to be reconstructed.

'xxxxxx' is not a recoverable KEYED/DIRECT file

The above message indicates that the selected file is not a recoverable keyed file.

Cannot open 'xxxxxx':xxxxxx

The above message indicates the file could not be opened. The actual reason for the open failure
appears in the message after the colon.

A temporary file will be needed to hold the data during recovery
Enter name of temporary file: _

The system will provide the name of a temporary holding file based on the original file name. Press
ENTER to use the name provided or enter a different name. If the file being recovered is large, the
holding file may need to be redirected to a different system device.

Temporary file 'xxxxxx' already exists. Overwrite it?
 Yes No Quit

Select:
Yes to overwrite the existing holding file
No to enter a different holding file name.
Quit to exit the utility.

Recover to highest active index or physical end of file?
 Active_index Physical_EOF Quit

Select:
Active_index to recover the data up to the location indicated in the file header as the end

of the file. If the file was re-initialized accidentally or there is some question
as to the validity of the file header, DO NOT select this option.

Physical_EOF to recover to the physical end of the disk file as allocated by the operating
system. This may result in some unwanted records appearing in the output
file.

Quit to exit the utility.

Utilities and Subprograms Subprogram

ProvideX 29

*UFAR – Recovered keyed file (continued):

At this point the utility will try to read the first few records in the file in an attempt to develop some
data validation rules. These rules will include the number of fields in each record, key sizes, and key
content. The rules will be displayed and the user is asked to confirm their validity for all records on
the file.

Is this correct for ALL records in this file?
 Yes No Quit

Select:
Yes to indicate that the rules are valid for ALL records in the file.
No to indicate that the rules DO NOT apply to all the data records in the file.
Quit to exit the utility.

Now the utility reads all the records from the corrupted file by record index. If the record appears to
be correct, it is copied to the holding file. This proceeds until the specified end point of the file is
reached.

Recovered xxxxxx records. Clear and reload original file?
 Yes No Quit

Select:
Yes to clear the contents of the original file and to copy the holding file into it.
No to leave the original file unchanged and leave the data on the holding file.
Quit to exit the utility.

File 'xxxxxx' repaired successfully. Erase temporary file 'xxxxxx.BAK'
 Yes No Quit

Select:
Yes to delete the holding file.
No to keep the holding file.
Quit to exit the utility.

*UFC
File Copy

Description:
This utility program is used to copy the contents of a ProvideX file. The copy reads and writes
physical records between the files. If the input file has an external key and the output file does not,
the key will be inserted in front of each record's data separated by a ProvideX separator character
(Hex 8A). If the output file has an external key and the input file does not, all data up to the first
ProvideX separator character is used as the external key and is dropped from each record's data.
Optionally this utility may be CALLed as a subprogram giving the input and output file names.
Calling sequence:

 CALL "*UFC", CALL_FR$, CALL_FR$, CALL_TO$, CALL_CL$, CALL_DSP

Subprograms Utilities and Subprograms

30 ProvideX

*UFC – File copy (continued):

Where:

CALL_FR$ must contain the name of the input file.
CALL_TO$ must contain the name of the output file.
CALL_CL$ is set to "Y" to pre-clear the output file.
CALL_DSP if set to 1, causes the utility to display a progress report on the screen.

File copy utility
What is the name of the file to copy from? _

Enter the name of the file from which to copy.

Input file is 'xxxxxxx'
What is the name of the output file? _

Enter the name of the file, which is to receive the data.

The utility asks if the output file is to have all existing data removed before adding the data from the
input file.

Pre-clear output file 'xxxxxxx'
 No Yes Quit

Select:
No to only add the data to the output file.
Yes to have all existing data in the output file removed prior to adding the input

data.
Quit to exit the utility.

*UFD
File Delete

Description:
This utility deletes a file from the system and returns its disk space to the operating system.

Delete file utility
File to delete: _

Enter the name of the file to delete.

'xxxxxx' is not a data file

The above message is displayed if the name specified is not the name of a data file.

Are you sure you wish to delete 'xxxxxx'
 No Yes Quit

Utilities and Subprograms Subprogram

ProvideX 31

*UFD – File delete (continued):
Select:

No to keep the file.
Yes to delete the file.
Quit to exit the utility.

File 'xxxxxx' deleted. More deletes?
 No Yes Quit

Select:
No if there are no more deletes.
Yes to delete other files.
Quit to exit the utility.

NOTE: Once a file has been deleted, there is no way to recover its information other than reloading it

from a backup.

*UFE
File Data Erase

Description:
This utility is used to erase the contents of a data file while preserving the file definition.

Erase file contents utility
File to clear: _

Enter the name of the file to clear.

'xxxxxx' is not a data file

The above message is displayed if the name specified is not the name of a data file.

File 'xxxxxx' erased. More erasures?
 No Yes Quit

Select:
No if there are no more files to clear.
Yes to clear other files.
Quit to exit the utility.

*UFI
Display file Information

Description:
This utility displays file information consisting of the file type, number of records, key information,
record size, and other related information (block size, link references, etc.) depending on file type.

Subprograms Utilities and Subprograms

32 ProvideX

*UFI – Display file information (continued):

Display file information
Name of file: _

Enter the name of the file, which is to be displayed. Once the file name is entered, the utility displays
the true path name to the file and all other applicable file information.

*UFM
Make a data file

Description:
This utility is used to create new data files.

Make file utility
File to make? _

Enter the name of the file to create.

'xxxxxx' already exists

The above message is displayed if the name specified is the name of a file (or directory) that already
exists.

What type of file will 'xxxxxx' be?
 Keyed Indexed Serial Quit

Select:
Keyed if the file is to have a key (or keys).
Indexed if the file is to be indexed.
Serial if the file is to be Serial. There are no other questions asked regarding Serial

files. Once this option is selected, the file will be created.
Quit to exit the utility.

Creating Keyed file 'xxxxxx'
Maximum record size (0=Sort file -- Key only)? _

Enter the maximum record size for the file.

Do you want FIXED or VARIABLE length records
 Variable Fixed Quit

Select:
Variable to create a variable length record file.
 Fixed to create a fixed length record file.
 Quit to exit the utility.

What percentage of space do you want reserved for record expansion
Enter percentage (5-80)? _

Utilities and Subprograms Subprogram

ProvideX 33

*UFM – Make a data file (continued):

If a VARIABLE length record is selected, enter the percentage of growth to reserve for each record.
Records can grow beyond the value entered, but performance is better if the value is accurate.

Define keys for file 'xxxxxx'
Size of EXTERNAL key (0=No external key): _

Enter the size of any external key.

Are their any more keys to be defined?
 No Yes Cancel Quit

Select:
No if there are no additional keys to define.
Yes to define additional keys.
Cancel to change the file definition.
Quit to exit the utility.

More components for 'xxxxxx'
 No Yes Cancel Quit

Select:
No if there are no additional components in the key.
Yes if there are additional components in the key.
Cancel to change the file definition.
Quit to exit the utility.

Define xxxxxx - xxxxxx
Enter field number containing key data xxxxxx: _

Enter the field number within the record that contains the key information. Enter 0 for the complete
record without regard to field separators, or KEY for the external key, if one exists.

Define xxxxxx - xxxxxx
Enter offset within field xxxxxx: _

Enter the offset within the field. Enter 1 for the start of the field.

Define xxxxxx - xxxxxx
Enter length of key component: _

Enter the length of the key segment.

Key sequence for xxxxxx - xxxxxx
 Ascending Descending Cancel Quit

Select:
Ascending to specify an ascending key.
Descending to specify a descending key.
Cancel to change the file definition.
Quit to exit the utility.

Subprograms Utilities and Subprograms

34 ProvideX

*UFM – Make a data file (continued):

Making SORT file 'xxxxxx'
What is the maximum key size (0<n<99)? _

Enter the maximum key size for the SORT file.

Making INDEXED file 'xxxxxx'
Maximum record size? _

Enter the maximum record size for the INDEXED file.

What is the maximum number of records ('*'=no limit)? _

Enter the maximum number of records that the file will be allowed to contain. Entering an asterisk (*)
indicates that there is no preset limit to the number of records.

File 'xxxxxx' created. More files to make?
 No Yes Quit

Select:
No if there are no more files to create.
Yes to create additional files.
Quit to exit the utility.

*UFP
File print

Description:
This utility is used to print the contents of a data file.

Print file utility
File to print: _

Enter the name of the file to print.

'xxxxxx' is not a printable file

The above message will be displayed if the file name entered does not refer to a file that can be
printed.

Print multiple fields per line
 Yes No Quit

Select:
Yes to print multiple fields on one line separated by a vertical bar.
No to print one field per line.
Quit to exit the utility.

Utilities and Subprograms Subprogram

ProvideX 35

*UFP – File print (continued):

Printing file 'xxxxxx'
Enter starting key: _

-or-
Printing file xxxxxx'
Enter record number to start printing at: _

Identify the starting record at which to begin printing.

Starting key 'xxxxxx' for file 'xxxxxx'
Enter ending key: _

-or-
Starting record number 'xxxxxx' for file 'xxxxxx'
Enter record number to end printing at: _

Identify the record at which to end printing. If no ending key is entered, the file is printed until the end
of file is reached.

*UFR
Change File name

Description:
This utility renames data file(s).

File rename utility
File to rename: _

Enter the name of the existing file to be renamed.

File 'xxxxxx' does not exist

The above message is displayed if no file with the name specified can be found.

'xxxxxx' is not a data file

The above message is displayed if the name specified is not the name of a data file.

Renaming file 'xxxxxx'
Enter new name: _

Enter the new name for the file.

File 'xxxxxx' already exists

The above message is displayed if a file with the new name already exists.

File 'xxxxxx' now 'xxxxxx'. More renames?
 No Yes Quit

Subprograms Utilities and Subprograms

36 ProvideX

*UFR – Change file name (continued):
Select:

No if there are no more renames required.
Yes to rename other files.
Quit to exit the utility.

*UFU
File Update

Description:
This utility updates the contents of a data file. It allows for the addition, deletion, and modification of
data records.

Update data file utility
File to update: _

Enter the name of the data file to be updated.

'xxxxxx' is a program file - not modifiable

The above message is displayed if the file name entered refers to a program file.

'xxxxxx' is a sequential file - not modifiable

The above message is displayed if the file name entered refers to a SERIAL file.

Modify file 'xxxxxx'
Record index number: _

Enter the record number of the record to update. The record number must not be less than zero,
otherwise, the following message is displayed.

Invalid record number. Must be > or = zero

If a record number is entered for a record that does not exist, the utility will assume that a new record
is being created. See the following description on 'Creating new records'. If the record did exist, see
'Modifying existing records'.

Modify file 'xxxxxx'
Record access key (nnn chr.): _

Enter the primary access key for the record to update. The key must not be longer than the defined
primary key, otherwise, the following message is displayed.

Key size too long

Utilities and Subprograms Subprogram

ProvideX 37

*UFU – File update (continued):

If a key is entered for a record that does not exist, the utility will assume that a new record is being
created. See the following description on 'Creating new records'. If the record did exist, see
'Modifying existing records'.

Creating new records:
If the record identified does not exist the following question is asked.

'xxxxxx' record 'nnnnnn' does not exist. Add new record?
 Yes No Quit

Select:
Yes to option create a new record.
No to change the record number.
Quit to exit the utility.

If YES is selected, the contents of the new record can be added to the file by entering its data one
field at a time.

'xxxxxx' record 'nnnnnn' does not exist. Add new record?
F1 - Prior field F2 - End record

Each field of the record is entered. The system prompts you for the contents of field 1, 2, and so on
until the F2 key is pressed. If you make a mistake and need to reenter a prior field, press the F3 key.

If the record identified does exist the following question is asked.

Modify 'xxxxxx', record '
 Ignore Change Delete Quit

Select:
Ignore if no changes are to be made to the specified record.
Change to change a field within the record.
Delete to remove the specified record from the file. This option is available only for

files with a key and is not displayed when updating an Indexed file.
Quit to exit the utility.

Modify 'xxxxxx', record '(record identifier)'
Field #: _

Enter the field number to be changed/added. As the field numbers are entered, their contents will be
displayed for editing. Press ENTER to physically update the file. Press the F4 key to abandon the
changes.

'xxxxxx' record length error - record '

The above message is displayed if the resultant output record does not fit within the file.

The utility confirms the deletion request if the Delete option is selected.

Subprograms Utilities and Subprograms

38 ProvideX

*UFU – File update (continued):

Delete record 'xxxxxx' of 'xxxxxx'?
 No Yes Quit

Deleting existing records:
Select:

No to cancel the delete.
Yes to confirm the delete.
Quit to exit the utility.

Record 'xxxxxx' of 'xxxxxx deleted

The above message is displayed to confirm that the requested record has been deleted from the file.

*UFV
File View

Description:
This utility allows the contents of any datafile to be viewed.

View file utility
File to view: _

Enter the name of the data file that is to be viewed.

'xxxxxx' is not a viewable file

The above message appears if the file name specified does not refer to a valid viewable data file.
Program files and directories are not considered viewable data files.

View multiple fields per line
 Yes No Quit

Select:
Yes to display records with multiple fields on the same line. The vertical bar is

used as a field separator.
No to display each field on a new line.
Quit to exit the utility.

Viewing file 'xxxxxx'
Enter record number to start display at: _

For Indexed or Serial files, enter the record number of the first record to begin viewing. The record
number must be greater than or equal to zero.

Viewing file 'xxxxxx'
Enter starting key: _

Utilities and Subprograms Subprogram

ProvideX 39

*UFV – File view (continued):

For files with keys, enter the primary key of the record to begin viewing. The size of key specified
must not exceed the size of the defined primary key.

The utility displays the data records starting at the point specified. Any non-printable characters will
be converted to their Hexadecimal value and displayed within curly brackets {}.

If there is more information than will fit on one screen, the following message is displayed.

More data on file.
Enter new record number or <Return> to continue: _

Press ENTER to continue the display or enter a new starting record number or primary key.

The following message is displayed when the utility reaches the end of the data file. To continue the
display from the start of the file, press ENTER or enter a new starting record number (or key). Press
F4 to terminate the utility.

End of file reached!
Enter record number to start display at: _

*UG

General Utility Sub-menu

Description:
This program allows the user to select one of the General utilities included with ProvideX.

General system utilities
 Mortgage Spreadsheet Quit

Select:
 Mortgage to compute mortgage payments. (*UGM)
 Spreadsheet to export data to a spreadsheet. (*UGS)
 Quit to exit the utility.

Unable to process. Try another selection

The above message indicates that an unrecoverable error occurred in a subordinate utility program.

*UGM
Mortgage Calculation program

Description:
This sample program does mortgage calculations. The starting balance, mortgage rate, and period
must be entered. Enter either the desired payment amount or the number of payments.

Subprograms Utilities and Subprograms

40 ProvideX

*UG – General utility sub-menu (continued):

A payment table may be printed once the mortgage particulars have been entered.

Note: This sample program is designed to assist the programmer to become familiar with some of

the simpler aspects of ProvideX.

*UGS
Simple Spreadsheet Export

Description:
This utility generates an export file for subsequent importing into a spreadsheet. The name of the file
and the data fields to be extracted are required.

Each export definition is saved on a file called "PCXPRT.DEF" and must consist of the name of the
export definition, the input data file, the output file, and the columns that are to be generated.

Utilities and Subprograms Subprogram

ProvideX 41

*UGS – Simple spreadsheet setup (continued):

The columns that this program outputs are comprised of the fields specified. Each column must be
defined with a field number, an offset within a field, and a field length. A name may be associated
with a field.

As each column is defined, it is displayed on the screen as:

X:F(O,L) NAME

Where:
X is the column letter.
F is the field number.
O is the offset.
L is the length.
NAME is the optional field name.

The name associated with each field is recorded in the PCXPRT.DEF file. Future references to the
specific input file can use the field name rather than field number, offset, and length. In the preceding
example, all future references to file MK can refer to fields CUSTID and ADDR by name rather than
by field numbers, offsets, and lengths.

Once the desired fields have been defined, press F3. The export of the data can then be run.

NOTE: All data records from the input file are exported.

Subprograms Utilities and Subprograms

42 ProvideX

*UP
Program File sub-menu

Description:
This program is the Program Utilities sub-menu. It is used to select the function to be performed on
program files.

Program utilities:
 Make Delete Rename Compare Edit List Bulk-edit Secure Quit

Select:
 Make to create a program file.
 Delete to delete a program file.
 Rename to change the name of an existing program file.
 Compare to compare two programs.
 Edit to edit a program using the Full screen Editor.
 List to get a listing of a program.
 Bulk-edit to perform bulk editing of programs.
 Secure to set general security on programs.
 Quit to exit the utility.

Unable to process. Try another selection

The above message indicates that an unrecoverable error occurred in a subordinate utility program.

*UPB
Program Bulk Search & Replace

Description:
This utility performs a common string search and/or replacement against a series of programs. It
accepts up to five different search strings which can be changed. The search can be done by exact
words, or by regular expression, or without regard to case (see MSK function in Language Reference
for definition of expressions).

Bulk program search and replace
String to search for:_

Enter the string to be searched for.

String #n:'xxxxxx'
Enter replacement string:_

If the string is to be changed, enter the replacement text, otherwise, press the ENTER key. The
system will repeat the preceding two questions for up to five strings or until the ENTER key alone is
pressed in response to "String to search for".

Utilities and Subprograms Subprogram

ProvideX 43

*UPB - Program bulk search and replace (continued):

What type of search is desired?
 Exact_match Ignore_case Word_only Mask Quit

Select:
 Exact_match if the string must match exactly.
 Ignore_case if the string can occur in either upper or lower case.
 Word_only if the string desired must occur as an independent word (variable name,

command, etc.).
 Mask if the strings being searched for are MSK() expressions.
 Quit to exit the utility.

Output results to
 Screen Printer Both Quit

Select:
 Screen to show the lines found on the terminal.
 Printer to print the lines found in a report.
 Both to both show and print the lines found.
 Quit to exit the utility.

Where are the programs located?
Enter starting directory:_

Enter the name of the directory where the programs are located. By default, the current directory is
searched.

Sorry, 'xxxxxx' is not a directory

The above error message is displayed if the name entered is not the name of a directory.

Include sub-directories within 'xxxxxx'
 No Yes Quit

Select:
 No if only the directory entered is to be searched.
 Yes if the directory entered and all sub-directories are to be searched.
 Quit to exit the utility.

Which programs in xxxxxx?
Enter mask/name: _

Enter a pattern match for the desired programs. Press ENTER for all programs.

The utility scans the directory and outputs any lines containing the desired strings.

When a program contains a string being searched (and not replaced), all matching lines are
displayed/printed and the following question is asked.

Subprograms Utilities and Subprograms

44 ProvideX

*UPB - Program bulk search and replace (continued):

Matches in program 'xxxxxx'
 Continue Non_stop Quit

Select:
 Continue to continue searching more programs.
 Non_stop to continue searching but not to pause at the end of each program.
 Quit to exit the utility.

When a program containing a string to be replaced is found, all changed lines are displayed/printed
and the following question is asked.

Changes in program 'xxxxxx'
 Update Skip All Quit

Select:
 Update to change the program.
 Skip to leave the program unchanged.
 All to change this and all subsequent programs.
 Quit to exit the utility

*UPC
Program compare

Description:
This utility is used to compare two existing programs. The comparison is done on a line by line basis.
There is no attempt made to match lines whose line numbers have changed.

Program compare utility
Original program file: _

*UPC - Program compare (continued):

Enter the original program file name.

'xxxxxx' is not a program file

The above message occurs if no program file with the name specified exists.

Original program file:xxxxxx
Revised program file: _

Enter the name of the program to compare with the original program.

'xxxxxx' is not a program file

The above message occurs if no program file with the second name exists.

Utilities and Subprograms Subprogram

ProvideX 45

*UPC - Program compare (continued):

Print only the lines, which have been changed
 Yes No Quit

Select:
 Yes to print only the lines that are different.
 No to print all lines and flag only those lines that are different.
 Quit to exit the utility.

The output consists of a side by side listing of both programs with a flag noting the differences in the
middle of the report. These flags are:

 Add New line added
 Chg Line has been changed
 Del Line has been deleted

*UPD
Program file Delete

Description:
This utility deletes program files from the system.

Delete program utility
Program to delete: _

Enter the name of the program to be deleted.

'xxxxxx' is not a program

The above message occurs if no program file with the name specified exists.

Program 'xxxxxx' deleted. More deletes?
 No Yes Quit

Select:
 No if there are no more programs to delete.
 Yes to enter more programs to delete.
 Quit to exit the utility.

*UPL
Program file list

Description:
This utility provides a hard copy listing of a program or series of programs.

Subprograms Utilities and Subprograms

46 ProvideX

*UPL - Program file list (continued):

Program print utility
Enter program name: _

Enter the name (or mask) of the programs to print.

No programs found to match '

The above error message occurs if no programs were found to match the specified input.

Select the type of listing to be produced.

Do you want a formatted print (Takes longer...)
 No Yes Quit

Select:
 No to produce an unformatted program listing.
 Yes to produce a formatted program listing.
 Quit to exit the utility.

If desired, select a program cross-reference listing.

Full listing and variable cross reference table?
 Both Listing_only Xref_only Quit

Select:
 Both to produce both a cross-reference and program listing.
 Listing_only to produce a program listing only.
 Xref_only to produce a cross-reference listing only.
 Quit to exit the utility.

*UPM

Program file Create

Description:
This utility is used to create program files.

Make program file utility
Program to make: _

Enter the name of the program file to create.

Program 'xxxxxx' already exists

The above message is displayed if a file with the name entered already exists.

Utilities and Subprograms Subprogram

ProvideX 47

*UPG – Program file create (continued):

Program 'xxxxxx' has been made. More to make?
 No Yes Quit

Select:
 No if there are no more program files to create.
 Yes to create more program files.
 Quit to exit the utility.

*UPR
Change Program file name

Description:
This utility is used to rename existing program files.

Program rename utility
Program to rename: _

Enter the name of the existing program file that is to be renamed.

'xxxxxx' is not a program

The above message is displayed if no program file of the name given exists.

Renaming program 'xxxxxx'
Enter new name: _

Enter the new name for the program file.

Program 'xxxxxx' now 'xxxxxx'. More renames?
 No Yes Quit

Select:
 No if there are no more program files to rename.
 Yes to rename more program files.
 Quit to exit the utility.

*UPS
Program Security

Description:
This utility is used to set a default password for all program loads and saves. This utility can be used
during the development cycle to eliminate the need to constantly enter the PASSWORD for a
program after loading and just before saving.

This utility sets the default password (PASSWORD * ".....").

Subprograms Utilities and Subprograms

48 ProvideX

*UPS – Program security (continued):

ProvideX removes and re-assigns passwords from all programs with the default password. New
programs are created with the default password assigned.

Set general program security password
Security password (<ENTER> for no password): _

Enter the default program password.

Utilities and Subprograms Subprograms

ProvideX 49

Chapter 2
Subprograms
This section of the manual contains a description of the subprograms included with the ProvideX
system. These subprograms provide the developer with a comprehensive set of tools to facilitate the
development of new applications and simplify the task of upgrading existing ones.

While every effort has been made to ensure that these subprograms function under most conditions,
Sybex cannot guarantee that they will function under all conditions. Should any problems with these
subprograms be encountered, please contact your local ProvideX distributor.

Note: If the developer wishes to change the functionality provided by these subprograms, it is

recommended that the revised versions be maintained and referenced in a separate
directory. This will prevent the overwriting of custom alterations with the new versions of the
ProvideX standard routines, as they become available.

*DATE
Date Validation subprogram

Description:
This subprogram is used to validate an input date and to convert it to a standard format. The input
procedure is flexible in accepting the date. Both numeric and alphanumeric input is accepted.

Numbers containing 4 digits or exceeding 31 are assumed to be a year. Numbers between 13 and
31 are considered to be a month, and numbers between 1 and 12 are considered to be the day of the
month.

When two or more numbers are found which satisfy either month, day or year, the first number is
considered to be the month, the second to be the day, and the third to be the year. If only one
number between 1 and 31 is entered, it is assumed to be the day.

If no month or year is found, the current month and year is used. If the date is invalid, an error is
generated in the subprogram which can be trapped using a ERR= clause in the CALL statement.
Calling sequence:
CALL "*DATE", IN_DT$, IN_FM$, OT_JUL$, OT_DAY
Where:
 IN_DT$ contains the input date and returns the output.
 IN_FM$ contains the format of the date required where DD is the numeric day,

MM is the numeric month, YY or YYYY is the numeric year, and MMM is
the alphanumeric month. All other characters are copied unaltered into
the date returned.

Subprograms Utilities and Subprograms

50 ProvideX

*DATE - Date validation subprogram (continued):

 OT_JUL$ returns the date as a value of YYDDD where YY is the last two digits of

the year and DDD is the day number within the year (Jan 1 is day 1,
etc..).

 OT_DAY returns the day of the week as a value of 1 through 7 with Monday being
equal to 1 through Sunday being equal to 7.

*FL.LST
Generate File List

Description:
This subprogram returns a sorted list of files in a directory. The caller specifies the directory name,
mask, and file types to return.
Calling sequence:

 CALL "*FL.LST", OT_LST$, IN_DIR$, IN_MSK$, IN_TYPS$
Where:
 OT_LST$ returns the file names found in the directory. Each entry consists of a 12

character file name followed by a 1 character file type (13 characters per
file).

 IN_DIR$ if specified and non-null, contains the name of the directory to be
searched. By default, the current directory is searched.

 IN_MSK$ if specified and non-null, must contain the file name mask to compare
against. Only files that match this mask will be returned. By default, this
is all files.

 IN_TYPS$ if specified and non-null, must contain the types of files to be returned.

The single character file type codes are as follows:

 I - Indexed file
 K - Keyed/Direct/Sort file
 L - Link file
 D - Directory
 S - Serial (or unknown file type)

*FL.MTH
Compare File Name to Mask

Description:
This subprogram is used to compare a file name to a specified input file name or mask. It handles
pattern matches such as *.BAT, ???DAT.IDX.
Calling sequence:

 CALL "*FL.MTH", IN_MSK$, IN_NAME$

Utilities and Subprograms Subprograms

ProvideX 51

*FL.MTH – Compare file name to mask (continued):

Where:
 IN_MSK$ contains the desired file name or mask to compare.
 IN_NAME$ contains the file name to be compared.

If the name specified (IN_NAME$) does not match the mask (IN_MSK$), this subprogram exits with
an error #11. If the name does matches, this subprogram exits normally.

*FL.NME
Return name of a work file

Description:
This subprogram returns the name of a work file. The file name returned consists of:

Xfffhhmm.WRK
Where:
 fff is the value of FID(0).
 hhmm is the current time.

If the Environment variable PVXTMP is defined, the name returned is prefixed with its value.
Calling sequence:

 CALL "*FL.NME", OT_NAME$
Where:
 OT_NAME$ returns the path name of a work file to be used.

*OPTSEL
Generic Option Selector

Description:
This generic option selection utility displays a prompt line and an option selection line. The user can
chose an option either by entering the first letter or by shifting through the options via the cursor
movement keys (left/right arrow or tab) and then pressing ENTER. The first letter of the selected
option is returned to the calling program. The prompt and option lines are cleared and only the
selected option is left on the screen.

By default, the two lines are placed on the bottom of the screen. The calling program can override
this.
Calling sequence:

CALL "*OPTSEL", OT_ANS$, IN_MSG$, IN_OPTS$, IN_LNO

Subprograms Utilities and Subprograms

52 ProvideX

*OPTSEL – Generic option selector (continued):

Where:
 OT_ANS$ returns the selected option. Only the first character of the selected

option is returned. A null string is returned if no option was selected and
a function key was pressed.

 IN_MSG$ must be initialized with the prompt line to appear above the option
selection line.

 IN_OPTS$ must be initialized with the options to be presented to the user. The
options must be separated with a space and the first character of each
option must be unique.

 IN_LNO must be initialized with the line number in the current window on which to
start the prompt and option selection. If omitted, the prompt and option
lines appear as the last two lines of the current window.

*OPTSEL Example: Given the following calling parameters:

 CALL "*OPTSEL",
 X$,
 "Enter your favorite animal",
 "Cat Dog Fox Rabbit Horse"

The screen/window appears as follows:

NOTE: This subprogram supports the Mouse.

*PG.CNV
Convert program

Description:
This subprogram is called to convert a ProvideX program file to a serial file or vice-versa. Two
parameters are required, the first is the input file name, and the second is the output file name.
Calling sequence:

 CALL "*PG.CNV", IN_PGM_FRM$, IN_PGM_TO$
Where:
 IN_PGM_FRM$ is the name of the input file (either program or serial) to be converted.

This file must exist.
 IN_PGM_TO$ is the name of the output file (either program or serial) to receive the

converted program. If this parameter is null, the utility generates a work
file and returns its name in this field. If the file does not exist, a Serial file
is produced.

Utilities and Subprograms Subprograms

ProvideX 53

*POPSEL
Popup Selection Box

Description:
This subprogram displays a pop-up window with a selection. The user can choose one of the
selections, which is then returned to the calling program.
Calling sequence:

 CALL "*POPSEL", OT_ANS$, IN_OPTS$, IN_MSG$
Where:
 OT_ANS$ returns the first character of the selection chosen. A null string is

returned if the user did not select any of the options presented, but
instead pressed a function key.

 IN_OPTS$ must contain all the options to be presented, each separated by a back
slash (\). These options are placed on the bottom line of the box with the
first letter highlighted.

 IN_MSG$ This parameter string must contain the message line to be displayed in
the box.

NOTE: This subprogram supports the Mouse.

*PR.ABT

Abort print file

Description:
This subprogram is called to abort the current output for the printer file specified.
Calling sequence:

 CALL "*PR.ABT", PR_LFN
Where:
 PR_LFN is the logical file number for the printer.

*PR.CLS
Close print file

Description:
This subprogram is called to close a print file. The print file to be closed must be specified.
Calling sequence:

 CALL "*PR.ABT", PR_LFN
Where:
 PR_LFN is the logical file number for the printer.

Subprograms Utilities and Subprograms

54 ProvideX

*PR.GET
Get print device

Description:
This subprogram is called to allocate a printer from the system. Typically, it is called for physical
devices, which require the program to wait for access. If the device is unavailable, a message
appears on the terminal and the program tries to get the device later.
Calling sequence:

 CALL "*PR.GET", PRTR$, LN
Where:
 PRTR$ contains the name of the printer to be opened.
 LN contains the line number on the screen on which the wait message is

displayed.

*PR.OPN
Open print file

Description:
This subprogram is used to obtain and open a print file. It asks the user for the name of the print file
to open. By default, it opens the printer (or file) defined in the global system variable %Z_PRTR$.
Calling sequence:

 CALL "*PR.OPN", PR.LFN, LN
Where:
 PR.LFN contains the file number to be used when opening the printer. If zero,

this subprogram dynamically assigns a new file number (via HFN) and
returns it in this argument.

 LN contains the line number to use on the screen when asking for the
device/file name. If this parameter is not specified, the question appears
at the bottom of the screen.

*PR.SEL
Select print file

Description:
This subprogram selects the printer to receive a print file.
Calling sequence:

 CALL "*PR.SEL", PRTR$, LN
Where:
 PRTR$ returns the name of the printer selected.
 LN is the line number to display/ask for the printer selection.

Utilities and Subprograms Subprograms

ProvideX 55

*SCR.RST
Restore current window

Description:
This subprogram is used to restore the screen saved by a prior call to *SCR.SVE.

The current window only is restored. If the window size has changed, the original saved data is
placed in the upper left corner of the current window and truncated to fit. Any unused area is cleared.

 CALL "*SCR.RST", SV_SCRN$
Where:
 SV_SCRN$ is the value returned from *SCR.SVE which contains the screen image

information.

*SCR.SVE
Save window image

Description:

This subprogram saves the current screen image. It is called with a variable, which receives the
window contents. The contents of the current window only are preserved. To restore the window,
the subprogram *SCR.RST is called with the same variable.
Calling sequence:

 CALL "*SCR.SVE", SV_SCRN$
Where:
 SV_SCRN$ is the variable to receive the screen image information.

*SELECT
Item selection utility

Description:
This subprogram displays a scrolling list of items within a window on the screen. An item can be
selected by first highlighting it with the Up/Down arrow keys and then pressing ENTER. The selected
entry's index is returned to the calling program.
Calling sequence:

 CALL "*SELECT", SEL_IDX, SEL_TBL${ALL}, SEL_TTL$, SEL_WIDE, WDW_CLR$
Where:
 SEL_IDX returns the selected index. On input, it can be used to initialize the

display.
 SEL_TBL${ALL} is a string table that contains the options to be presented.
 SEL_TTL$ contains the title/prompt that will appear in the selection window.

Subprograms Utilities and Subprograms

56 ProvideX

*SELECT – Item selection utility (continued):

SEL_WIDE optional parameter containing the width of the window to be created. If
not provided (or zero), the window will be 6 columns wider than the
largest entry in table up to a maximum of 70 columns.

 WDW_CLR$ optional parameter containing a string of mnemonics to be used to define
the colour of the window. If not provided, the current colours will be
used.

NOTE: This subprogram supports the Mouse.

*VLDATE
Input Validation routine

Description:
This subprogram is used to validate an input string against a series of validation rules. If the
validation fails, an error message is returned. The rules provided to this routine must contain a series
of values or ranges separated by commas.
Example:
 1, 4-5, A-X.

Calling sequence:
 CALL "*VLDATE", INP_VAL$, VLD_TBL$, ERR_MSG$

Where:
 INP_VAL$ is the input value to validate.
 VLD_TBL$ is a string containing the validation rules.
 ERR_MSG$ returns the error message if the validation fails or a null string, if the

validation is successful.

Utilities and Subprograms System Programs / Files

ProvideX 57

Chapter 3
System Programs/Files

This section of the manual contains a description of the programs, which are used by ProvideX to
handle Hot-keys and built-in Help and Query facilities. Normally, application programs should not call
these routines. They have been included in this manual to provide the application designer with a
better understanding of how the system internals operate.

The following files have a two or three character language code as part of the file name. This
language code is taken from the system environment variable LANG. If undefined, the value of EN
(for English) will be used.

*LEXTBL.EN
*LEXDEF.EN
*MLFILE.EN

*PRMDEF.EN

ACTIVATE.PVX
System activation information

Description:
This file contains the internal activation information for your version of ProvideX. The information
includes:

• System name
• Software serial number
• System identification number
• Maximum simultaneous user count
• Expiry date
• Package activation information

 WARNING
This file should not be modified or moved under any conditions. Any attempt to modify or move this
file may result in the partial or total deactivation of your software!! Reactivation of your software
caused by tampering with this file is a billable service.

System Programs/Files Utilities and Subprograms

58 ProvideX

*CONTROL
Hot-Key intercept program

Description:
This is the Hot-Key intercept utility program. It is invoked internally by the ProvideX executive
whenever a terminal input encounters a CTL value between -1 and -999. It processes the following:

CTL value Processing
-1 Calls the system utilities main menu *U
-2 Prints the contents of the current screen
-3 Line-switch (on some systems)
-4 Display current statistics
-5 Input field help (Calls *HELP)
-6 Input field query (Calls *QUERY)
-7 Program help (Calls *HELP.PRG)
-8 Resets screen
-9 (Reserved for future usage)
-10 thru -999 Calls the program $CTL-nnn where '-nnn' is the CTL value. Before calling this program, a new

window consisting of the entire screen is created. It is dropped when the program returns.

Once *CONTROL has completed processing the CTL function, ProvideX will re-execute the INPUT
(or OBTAIN) directive that initiated the process.

If the program reads raw data directly from the keyboard using the mnemonics 'BI' or 'ME', or the
directives READ RECORD or ACCEPT, the program must call *CONTROL to handle all CTL values
between -1 and -999.

Example:
Read single character but detect Hot-Key call to system functions

 0100 OBTAIN (0,SIZ=100) 'ME',X$,'MN'
 0110 IF CTL < 0 AND CTL > -1000 THEN
 0110: CALL "*CONTROL"; GOTO 0100

*DEV
Device Drivers

Description:
ProvideX supports a wide variety of device drivers. Each device driver has its own ProvideX basic
program which resides in the *DEV directory. Each device driver is responsible for defining the
terminal characteristics, mnemonics, and CTL definitions.

The device driver for your terminal is loaded and executed during system initialization. Device drivers
are also executed whenever a ProvideX device link file is opened.

Utilities and Subprograms System Programs / Files

ProvideX 59

*DEV – Device drivers (continued):

Device drivers are standard ProvideX programs and have access to the full complement of ProvideX
functions and directives. See the ProvideX Users Guide for more details on writing device drivers.

*ERROR
Generic Error Handler

Description:
This program is intended to serve primarily as a sample error handling program.

This utility displays the message associated with the error condition and the current program stack.
The user may abort the program by entering 'A', retry the error by entering 'R', or restart the session
by entering 'S'.

If the system variable %Z_PASSWORD$ is defined, the 'A' and 'S' options both require the entry of
the value stored in this variable as a password.

Note: Normally, each application designer will develop his/her own error handler.

*HELP

On-line help display

Description:
This is the main program responsible for on-line help. It is invoked by "*CONTROL" to retrieve and to
display the on-line help text and to allow it to be maintained.

It retrieves any help information for the current program based on either the current screen location or
the value in the system variable 'HLP'. This information is obtained from either the user help file
"HELP.xx" or "*HELP.xx" for the system utilities ('xx' is the current language code). Any help
information found is displayed, otherwise, a message indicating that there is no help is displayed.

The systems designer can enter or change the help text by entering the help password (password on
the program *HELP.PWD). The help text and any related Query definition can be changed if the
password is entered, followed by the ENTER key.

Common help messages may be defined by entering the first line of help text in the form =XXXXXX,
where XXXXXX is the name given to common help text to use.

System Programs/Files Utilities and Subprograms

60 ProvideX

*HELP.xx

System utility help information

Description:
This keyed file contains the help text for the system utilities. It is referenced by the system utility
*HELP and *HELP.PRG in response to a help request within a system utility.

*HELP.PRG

On-line Program help display

Description:
This program is responsible for the display and maintenance of the on-line Program help screens. It
is invoked by "*CONTROL" to retrieve and display the on-line help text and to allow it to be
maintained.

It opens and retrieves the help information for the current program from either the users help file
"HELP.xx" or "*HELP.xx" for system utilities ('xx' is the current language code). Any help information
found is displayed, otherwise, a message indicating that there is no help is displayed.

The systems designer can enter or change the help text by entering the help password (password on
the program *HELP.PWD). The system editor (as defined by environment value PVXEDIT) will be
invoked to allow the editing of the program help if the password is entered.

*HELP.PWD
On-line Program help password

Description:
This utility program's sole purpose is to verify the Help subsystem password. The program accepts
the password for the help subsystem as its only parameter. It validates the password and returns
normally if successful. Failure of the password causes an error exit.

This subprogram functions by attempting to de-password itself with the password given. By default,
the password for this program is:

SYBEX

Utilities and Subprograms System Programs / Files

ProvideX 61

*KYBRD.CFG/*KYBRD.STD

Keyboard definition files

Description:
These two keyed files contain the keyboard command sequences and their respective CTL values.
The system utility *TTY uses the information contained in these files to load the CTL key definitions
for terminals.

The *KYBRD.STD file contains the standard keyboard definitions as provided by Sybex. The
*KYBRD.CFG file contains any custom definitions that have been defined by the users. The system
utility *UCK creates and updates the *KYBRD.CFG file. These files contain records with 80 elements
where each element has the input sequences for various CTL functions. The CTL values for each of
the 80 elements is maintained in the *KYBRD.STD file along with the keyword description of the
function it represents.

When *TTY is looking for a keyboard definition, it first looks in the *KYBRD.CFG file. If no entry is
found, the *KYBRD.STD file is used.

*LEXTBL.xx/*LEXDEF.xx
ProvideX LEX definition tables

(xx indicates language)

Description:

The *LEXTBL file contains an internal format image of the syntax tables used by the ProvideX
compiler and lister components. The *LEXDEF file contains the same information but in a
conventional keyed file format to be used by the utility *LEXEDIT. The contents of these files have
the textual display formats for all internal ProvideX object code elements.

Whenever ProvideX compiles a statement, it converts it to an internal code. This internal code
consists of a one or two character code, which represents a directive, function, or system variable. It
is these codes that are saved to program files. The codes are translated back to viewable text when
a statement is listed.

Altering the syntax tables within ProvideX can change the translation process. This functionality
allows for the definition of a completely different set of directives, functions and variables as far as the
entry and listing of the program is concerned.

One of the primary uses for this functionality is to allow for multi-lingual systems. By defining
directives in other languages, users in the field who may be responsible for interfacing with support
personnel can be provided an environment that allows them to read the program in their native
language.

A secondary use of this functionality is to assist in the conversion of systems to ProvideX.

System Programs/Files Utilities and Subprograms

62 ProvideX

*MLFILE.xx
Message Library

Description:
This file contains all the textual elements of the ProvideX executive. All error messages are
maintained within this file as 80 byte records indexed by a message number.

The system date function (DTE) maintains the literals containing the names of the months and days
in the records starting at index 129 through index 135. These messages in English are:

129 : January,February,March,April,May,June
130 : July,August,September,October,November,December
131 : Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday
132 : am,pm,AM,PM
133 : Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
134 : Mon,Tue,Wed,Thu,Fri,Sat,Sun
135 : am,pm,AM,PM

In addition, the upper case character definition table is maintained in the first 64 bytes of the four
records starting at index 140. The lower case table is maintained starting at index 144.

*PRMDEF.xx
Parameter definitions

Description:
This file is used by the system utility program *UCP to maintain the descriptions and the valid ranges
for the system parameters. This keyed file has one record for each system parameter keyed on the
parameter code.

The record layout is:

Field # Description
1 Short description of parameter (16 char max)
2 Minimum value
3 Maximum value. If the maximum value equals the minimum value, the parameter simply toggles

OFF and ON.
4 Default value.
5 Reset indicator. A value of "Y" in this field indicates that changing this parameter may effect other

parameters. Therefore, *UCP must refresh the screen whenever a change occurs.
6 Help text

Utilities and Subprograms System Programs / Files

ProvideX 63

*QUERY
On-line Query processor

Description:
This utility is the 'Standard' query processor. It uses the information created by '*QUERY.DEF' to
create and display a query.

When a query is invoked, a window is displayed in the center of the screen with the first 10 records of
the specified query file. The Up/Down arrow, Pgup/Pgdn, Home or End keys allow for movement
within the file. Optionally, full or partial keys may be entered to position directly within the file.

If the user selects one of the entries displayed, its associated values (defined by the query definition)
are placed into the input buffer to be processed by the mainline program.

This routine is Mouse sensitive and provides scroll bars for direct positional manipulation.

See *QUERY.DEF following for details on query definition.

NOTE: This subprogram supports the Mouse.

*QUERY.DEF
Query definition/maintenance program

Description:
This utility program is called by the help subsystem to create or modify 'Standard' query definitions.
Standard queries present a series of items from the records of a specified file. The definition utility
allows the programmer to define the file name, fields to display, and their format.

The query definition must include the following:

 Query title: The title line for the query window
 Query file: The name of the keyed file to be presented.
 Query key no: The key number of the keyed file to be used. This will determine the

order of the records to be displayed.

 Query flds: There can be up to 9 fields displayed within a query. Each field must

define the field within a record of the file to display, the offset within the
field, the length of the field, a format specifier, a return indicator, and title.
Valid format specifiers are:

 0-9 Number of decimal points
 D Date format 99/99/99
 $ Currency display $#,##0.00

All fields with the return indicator set to "Y" are returned to the program which invoked the Query.
Each field is placed into the input queue, one field at a time.

System Programs/Files Utilities and Subprograms

64 ProvideX

*START.UP
SYSTEM START_UP

Description:
This is the general system startup program and is always executed during ProvideX initialization or
after a START directive. It displays the main system start up screen that contains the ProvideX
copyright and serial number messages. The program then calls the users "START_UP" program if it
exists. The user "START_UP" program is where default system parameters would be altered or
global variables would be initialized.

NOTE: Since this program and any user START_UP program are CALLed during system

initialization, they should not attempt to initiate any application programs. If you attempt to
have your START_UP program run your application, any error in your application may result
in a exit back to ProvideX command mode with no current program.

*TTY
Load Keyboard Definitions

Description:
This program is used by most terminal device drivers to load the keyboard control sequences for the
terminal. It uses the tables defined by "*UCK" to configure the device which is identified by the
system variable LFO (Last File Opened).

Whenever a terminal device driver is executed, it should transfer control to this program to load the
CTL definitions from the *KYBRD.CFG or *KYBRD.STD files.

Utilities and Subprograms Windows Development Kit

ProvideX 65

Chapter 4
Windows Development Kit
In order to provide a transition to a Windows and Object Oriented development environment, a
variety of subprograms and special Mnemonics are provided. These subprograms can be used
to display and control various Windows compatible display/input 'objects'. The current routines
run in standard Text mode and will be converted to full windows routines as they become
available in the future with no changes to the programs written today.

Overview of Subprograms and Objects:

In general, each object is defined by a call to "**xxxxx.def", where xxxxx indicates the object
type. A series of definition parameters such as the line, column, and size of the object are
provided with the call. Typically, the first parameter is a string where the routine will store its own
internal control information. The second parameter is the CTL value (or EVENT identifier) to be
returned on an INPUT statement whenever the specified object is selected by the mouse.

To process an 'object event', the subprogram "**xxxxx.xeq" is CALLed with the control structure
and the return value fields.

To remove an object, the subprogram "**xxxxx.del" is CALLed. Please note that the objects are
always destroyed whenever the current window is DROPed.

For objects which require updating by the program, the subprogram "**xxxxx.dsp" is provided.

The types of objects that are supported are:

BUTTON A button is used to signal a event. Typical uses include OK or CANCEL buttons

on a screen to signal that the user has completed input or wishes to cancel the
process. The programmer can activate a button by calling the event processing
subprogram.

CTLBTN A control button is like a standard button but it only returns a CTL value when

selected and cannot be activated directly by the program.

CHKBOX A check box is an ON/OFF indicator. The state of a check box toggles from On

to Off (or vice-versa) when selected by the user.

CHKLST A checklist is a related series of ON/OFF indicators, only one of which may be

active at any time. When the user selects one of the indicators, it is turned ON,
all other indicators in the check list are turned Off. This is similar to the push
buttons on a radio.

Windows Development Kit Utilities and Subprograms

66 ProvideX

Overview of Sub-programs and Objects (Continued):

MENU A menu is displayed on the top line of the current window. A string that contains

the main menu line contents, all submenu items, and a series of control flags
defines a menu. Each entry in a menu must have a single character identified as
the 'Access' character. Normally this is the first character of the menu item, such
as 'F' for File, 'E' for Edit, etc.. When a menu is selected, the program is passed
the series of letters that comprise the selected option such as "FS" for 'File' and
then 'Save'.

HSCRBR A horizontal scroll bar is displayed as a line proceeding from left to right upon

which there is a visual representation of a slider. It returns a numeric value
between 1 and a program defined maximum. The user may control the value of
the scroll bar by selecting the slider and moving it left (lower value) or right
(higher value). On the left and right sides of the bar are arrows which move the
slider one position left (value down by one) or right (value up by one) when
selected. If the user selects the line to the right of the slider, the slider will
increase by a 'Big jump'. Usually, the 'Big jump' is defined by the program as one
page of information. If the user selects the line to the left of the slider, the slider
will decrease by a 'Big jump'.

VSCRBR A vertical scroll bar is displayed as a line proceeding from top to bottom upon

which there is a visual representation of a slider. The user may control the value
of the vertical scroll bar by selecting the slider and moving it up (lower value) or
down (higher value). At the top and bottom of the bar are arrows that move the
slider one position up or down when selected. If the user selects the line above
the slider, the slider will move up in a 'Big jump'. If the user selects the line below
the slider, the slider will move down a 'Big jump'.

WHSCRL A window horizontal scroll bar consists of horizontal scroll bar which occupies

the bottom line of a frame around a window.

WVSCRL A window vertical scroll bar consists of vertical scroll bar which occupies the right

edge of a frame around a window.

LSTBOX A list box presents a series of options from which the user may select one. The

list is presented within a box on the screen. A scroll bar is placed on the right
side of the box if more entries exist than there are lines in the box.

VARBOX A variable list box is similar to a list box except that the user can enter a selection

not contained within the list. The user either types in the desired value or uses
the Up/Down arrow keys to select an entry from the list box which appears below
the entry line.

DRPBOX A drop box consists of a single line on the screen below which a list box will be

displayed. When the user selects the drop box, a list box containing the valid
values for the entry will appear. After the user selects the desired entry from the
list box, it will disappear and the single line will reflect the chosen entry.

Utilities and Subprograms Windows Development Kit

ProvideX 67

Overview of Sub-programs and Objects (Continued):

COMBOX A combo drop box consists of a single line on the screen below which a list box

will be displayed. The user may directly enter a value into a combo box or press
the Down arrow key to have a list box appear. A value from the list box then may
be selected or the user can continue to enter a manual selection.

Included in the ProvideX EXAMPLES directory is the demonstration program "DEMO". It
illustrates the use and functionality of some of the various Windows-like subprograms as follows:

Item # Routine Name Description
(1) **button Push Button
(2) **chkbox Check Box
(3) **chklst Check List
(4) **combox Combo Drop Box
(5) **ctlbtn Control Button
(6) **drpbox Drop Box
(7) **hscrbr Horizontal Scroll Bar
(8) **lstbox List Box
(9) **menu Pull Down Menus
(10) **varbox Variable List Box
(11) **vscrbr Vertical Scroll Bar
(12) **whscrl Horizontal Window Scroll Bar
(13) **wvscrl Vertical Window Scroll Bar

Windows Development Kit Utilities and Subprograms

68 ProvideX

Overview of Sub-programs and Objects (Continued):

The following special mnemonics have been defined for use in the formatting of scroll bars, menu
markings, etc. These mnemonics are used via the MNM function to insert a single character of
output and are not used independently as standard mnemonics.

The MS-DOS definitions have been provided and dummy definitions for other terminal types are
defined in *TTY.

Mnemonic Function
'! ' Character to output for scroll bars
'!X' Character to output for current position in bar
'!>' Right arrow character
'!<' Left arrow character
'!^' Up arrow character
'!V' Down arrow character
'!*' Menu tick mark indicator
'!M' Sub-menu indicator

NOTE: If '!X' is not defined, then scroll bars are not supported. The routines simply return

without effecting the display.

In and Out Flags:

Most of the Windows subprograms have input and output flags defined. Presently they are not
used in many of the subprograms, but have been reserved for future use. These flags are
designed to hold a series of options. All options within a flag are separated by commas. Append
a comma followed by the option when adding new options to a flag. Use the POS() function to
check for the presence of an option within a flag.

Passing Tables to Window functions:

All tables passed to functions, which require a list of elements must have a base of one, not
zero.

**BUTTON
Push buttons

Description:
This function provides the ability to define Push buttons, which return CTL events when, activated
by the mouse.
Define Calling sequence:

CALL "**button.def", b_def$, btn_text$, ctl_val, col, line, in_flg$, out_flg$
Where:
 b_def$ is the Button control structure variable.
 btn_text$ is the text to display in the button.

Utilities and Subprograms Windows Development Kit

ProvideX 69

**BUTTON – Push button (continued):

 ctl_val contains the CTL event to occur when the mouse selects the button

region.
 col is the column for the button.
 line is the line for the button.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Invocation Calling sequence:

CALL "**button.xeq", b_def$, in_flg$, out_flg$
Where:
 b_def$ is the Button control structure variable.
 in_flg$ contains input flags (Future).
 out_flg$ receives output options. This returns one of the following flags which

indicates how the button was selected:
 MSE the Mouse was pressed
 RET the Enter key was used
 SPC the Space bar was pressed

To delete a button:

CALL "**button.del", b_def$, in_flg$, out_flg$
Where:
 b_def$ is the Button control structure variable.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**CHKBOX
Check Boxes

Description:
A check box is a ON/OFF indicator. The state of a check box will toggle from On to Off (or vice-
versa) when selected by the user. The state indicator for a check box contains a "Y" if the check
box is ON, otherwise, the indicator contains a NULL string ("").
Define Calling sequence:

CALL "**chkbox.def", chk_def$, chk_text$, chk_val$, ctl_val, col, line, in_flg$,
out_flg$

Where:
 chk_def$ is the Check Box control structure variable.
 chk_text$ contains the text to display in the check box.
 chk_val$ is the current check box state.
 ctl_val contains the CTL event to occur when mouse selects the check box

region.
 col contains the column for the check box.

Windows Development Kit Utilities and Subprograms

70 ProvideX

**CHKBOX – Check boxes (continued):

 line contains the line for the check box.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Invocation Calling sequence:

CALL "**chkbox.xeq", chk_def$, chk_val$, in_flg$, out_flg$
Where:
 chk_def$ is the Check box control structure variable.
 chk_val$ contains the check box state.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

To delete a check box:

CALL "**chkbox.del", chk_def$, in_flg$, out_flg$
Where:
 chk_def$ is the Check box control structure variable.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**CHKLST
Check List

Description:
Check Lists have multiple choices with only one being selected at any given time. A check mark
is displayed beside the selected item.
Define Calling sequence:

CALL "**chklst.def", chkl_def$, ctl_val, chkl_idx, chk_lst${ALL}, col, line, width,
height, in_flg$, out_flg$

Where:
 chkl_def$ is the Check List control structure variable.
 ctl_val contains the CTL event to occur when mouse selects the check list

region.
 chkl_idx contains the index of the current item selected (default is 1).
 chk_lst${ALL} contains the list of items to be displayed.
 col contains the column for the check list.
 line contains the line for the check list.
 width contains the column width of the check list display.
 height contains the number of check list items.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Utilities and Subprograms Windows Development Kit

ProvideX 71

**CHKLST – Check list (continued):

Invocation Calling sequence:

CALL "**chklst.xeq", chkl_def$, chkl_idx, chk_lst${ALL}, in_flg$, out_flg$
Where:
 chkl_def$ is the Check list control structure.
 chkl_idx contains and returns the index of the selected item.
 chk_lst${ALL} contains the list of items to choose from.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

CALL "**chklst.del", chkl_def$, in_flg$, out_flg$
Where:
 chkl_def$ is the Check list control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**COMBOX
Combo boxes

A combo box is similar to a drop box except that it allows for the entry of values not contained
with the pre-specified list of items. Only a single line is occupied on the screen until the combo
box is activated. At this point, a 'List box' drops down from the input containing the possible
entries. The user may select one of the entries in the 'List box' or enter data directly.
To define a Combo box:

CALL "**combox.def", cbox_def$, cbox_val$, ctl_val, cbox_tbl${ALL}, col, line,
width, height, in_flg$, out_flg$

Where:
 cbox_def$ is the variable to receive the control structure for the Combo box.
 cbox_val$ contains the initial value to display.
 ctl_val contains the CTL event to occur when the mouse selects the box.
 cbox_tbl${ALL} contains the table of values for the box.
 col contains the column to start the combo box.
 line contains the line to start the combo box.
 width contains the width of the box. If omitted (or <3), this is set to the

length of the largest item in the list plus two for the border up to a
maximum of 40 (or the edge of the window).

 height contains the height of the box. If omitted (or <3), this is set to the
number of entries in the list plus two up to a maximum of 12 (or to
the bottom of window).

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Windows Development Kit Utilities and Subprograms

72 ProvideX

**COMBOX – Combo boxes (continued):

To process a Combo Box event:

CALL "**combox.xeq", cbox_def$, cbox_val$, cbox_tbl${ALL}, in_flg$, out_flg$
Where:
 cbox_def$ is the Combo Box control structure.
 cbox_val$ returns the value selected from the drop box or manually entered.
 cbox_tbl${ALL} contains the table of values for the box.
 in_flg$ contains input flags. The flag '+FOCUS' forces execution of this

routine. This is useful for systems which do not employ a Mouse.
 out_flg$ receives output flags (Future).

To delete a Combo Box:

CALL "**combox.del", cbox_def$, in_flg$, out_flg$
Where:
 cbox_def$ is the Combo Box control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**CTLBTN
Control buttons

Description:
This function provides the ability to define Control buttons which returns CTL events when
activated by the mouse.

Control Buttons can be accessed only with a Mouse. If you are writing software for systems
which may not support a mouse, you might consider using the **BUTTON routines. Otherwise,
you will have to define a keyboard control sequence and use the **ctlbtn.psh & **ctlbtn.rel
routines.
Define Calling sequence:

CALL "**ctlbtn.def", ctl_val, col, line, btn_text$, b_attr$, in_flg$, out_flg$
Where:
 ctl_val contains the CTL event to occur when the mouse selects the button

region.
 col contains the column for the button.
 line contains the line for the button.
 btn_text$ contains the text to display in the button.
 b_attr$ contains the Screen attributes for the button.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Utilities and Subprograms Windows Development Kit

ProvideX 73

**CTLBUT – Control button (continued):

Invocation Calling sequence:

CALL "**ctlbtn.xeq", col, line, btn_text$, ctl_val, b_attr$, in_flg$, out_flg$
Where:
 col contains the column for the button.
 line contains the line for the button.
 btn_text$ contains the text to display in the button.
 ctl_val contains CTL value of the button region.
 b_attr$ contains the Screen attributes for the button.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To delete a button:

CALL "**ctlbtn.del", col, line, btn_text$, in_flg$, out_flg$
Where:
 col contains the column for the button.
 line contains the line for the button.
 btn_text$ contains the text displayed in the button.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To highlight a button:

CALL "**ctlbtn.psh", col, line, btn_text$, b_attr$, in_flg$, out_flg$
Where:
 col contains the column for the button.
 line contains the line for the button.
 btn_text$ contains the text displayed in the button.
 b_attr$ contains the screen attributes for the button.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To turn a button highlight off:

CALL "**ctlbtn.rel", col, line, btn_text$, b_attr$, in_flg$, out_flg$
Where:
 col contains the column for the button.
 line contains the line for the button.
 btn_text$ contains the text displayed in the button.
 b_attr$ contains the screen attributes for the button.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Windows Development Kit Utilities and Subprograms

74 ProvideX

**DRPBOX
Drop boxes

Description:
A drop box is similar to a list box except that a single line only is occupied on the screen until the
drop box is activated. At this point, a 'List box' drops down from the input containing the possible
entries. When one of the entries is selected, the 'List box' disappears and the value selected
appears on the single line.
Drop box definition:

CALL "**drpbox.def", dbox_def$, dbox_val$, ctl_val, dbox_tbl${ALL}, col, line,
width, height, in_flg$, out_flg$

Where:
 dbox_def$ is the variable to receive the control structure for the drop box.
 dbox_val$ contains the value to display in the input line for the drop box. If the

value does not exist in the table, the first item from the table is
displayed.

 ctl_val contains the CTL event to occur when mouse enters input field.
 dbox_tbl${ALL} contains the table of values to use.
 col contains the column to start the drop box.
 line contains the line to start the drop box.
 width contains the width of the box. If omitted (or <3), this is set to the

length of the largest item in the list plus two for the border up to a
maximum of 40 (or the edge of the window).

 height contains the height of the box. If omitted (or <3), this is set to the
number of entries plus two in the list up to a maximum of 12 (or to
the bottom of window).

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Drop box event processing:

CALL "**drpbox.xeq", dbox_def$, dbox_val$, dbox_tbl${ALL}, in_flg$, out_flg$
Where:
 dbox_def$ is the drop box control structure.
 dbox_val$ returns the value selected.
 dbox_tbl${ALL} contains the Table of values to use.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To delete a Drop box:

CALL "**drpbox.del", dbox_def$, in_flg$, out_flg$
Where:
 dbox_def$ is the drop box control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Utilities and Subprograms Windows Development Kit

ProvideX 75

**ERROR.BOX
Error Box

Description:
This routine is used to display an Error or Warning message. It simply places the message in a
window on the screen and prompts the user to press enter.
Define Calling sequence:

CALL "**error.box", err_msg$, in_flg$, out_flg$
Where:
 err_msg$ contains the message to display in the window. Multiple lines of

description may be used by inserting the SEP variable at the end of
each line.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**HMOVE.CHK
Horizontal movement processor

Description:
This is an internal routine used by the list box functions to intercept keyboard movement. It is
used to process cursor movement keys →, ←, TAB, HOME, END, Scroll left, and Scroll Right.
Define Calling sequence:

CALL "**hmove.chk", hb_new, hb_max, hb_bjmp, in_flg$, out_flg$
Where:
 hb_new on input has the current value and returns the new value calculated.
 hb_max contains the largest value in the list.
 hb_bjmp contains the amount to adjust the new value by when detecting scroll

left/right.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Windows Development Kit Utilities and Subprograms

76 ProvideX

**HSCRBR
Horizontal Scroll Bar

A horizontal scroll bar is used when there is more information to display than fits on one screen.
It shows the relative position of the information currently displayed. The scroll bar typically
appears within a window region. When the mouse is activated within the scroll bar region, a CTL
value EVENT is initiated. The program must call **HSCRBR.XEQ to handle this event and
subsequently **HSCRBR.DSP to update the scroll bar display. **HSCRBR.DSP must be
CALLed to update the display whenever the location on the scroll bar changes via other program
functions (timer, file position, initial setting...).

These scroll bar functions should not be confused with the Window region horizontal scroll bar,
which appears on the bottom of the current window.
Defining scroll bar:

CALL "**hscrbr.def", hscr_def$, ctl_val,$ col, line, width, height, in_flg$, out_flg$
Where:
 hscr_def$ is the variable to receive the control structure for the scroll bar.
 ctl_val contains the CTL event to occur when mouse enters the scroll bar.
 col contains the column to start the scroll bar.
 line contains the line to start the scroll bar.
 width contains the scroll bar width (default 1).
 height contains the scroll bar height (default is to bottom of current

window).
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Updating scroll bar:

CALL "**hscrbr.dsp", hscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Where:
 hscr_def$ is the scroll bar control structure
 new_val contains the new value within scroll bar (minimum value = 1)
 max_val contains the end value within scroll bar
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed left/right of current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Processing Scroll bar event:

CALL "**hscrbr.xeq", hscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Utilities and Subprograms Windows Development Kit

ProvideX 77

**HSCRBR – Horizontal scroll bar (continued):
Where:
 hscr_def$ is the scroll bar control structure
 new_val returns the value corresponding to the selected position within the

scroll bar. The scroll bar must be updated by calling
"**HSCRBR.DSP" after the value is returned and processed.
(minimum value = 1).

 max_val contains the maximum value within scroll bar.
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed left/right of current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Deleting scroll bar:

CALL "**hscrbr.del", hscr_def$, in_flg$, out_flg$
Where:
 hscr_def$ is the scroll bar control structure
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**INPBOX
Input Box

An input box allows the user to click the mouse in the middle of a text field and have an INPUT
EDIT start at that position.
To define an Input box:

CALL "**inpbox.def", ibox_def$, ibox_val$, ctl_val, col, line, width, height, in_flg$,
out_flg$

Where:
 ibox_def$ is the variable to receive the Input box control structure.
 ibox_val$ contains the initial value.
 ctl_val contains the CTL event to occur when mouse enters box.
 col contains the column to start the combo box.
 line contains the line to start the combo box.
 width contains the width of the value.
 height contains the height of the region.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To process an Input Box event:

CALL "**inpbox.xeq", ibox_def$, ibox_val$, in_flg$, out_flg$

Windows Development Kit Utilities and Subprograms

78 ProvideX

**INPBOX – Input box (continued):
Where:
 ibox_def$ is the Input box control structure.
 ibox_val$ return the value input.
 in_flg$ contains input flags (Future).
 out_flg$ contains output flags. If the user enters text from the keyboard and

presses ENTER, a flag of 'RET' is returned.
To update the display of an Input Box:

CALL "**inpbox.dsp", ibox_def$, ibox_val$, in_flg$, out_flg$
Where:
 ibox_def$ is the Input box control structure.
 ibox_val$ contains the value to display.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To delete an Input Box:

CALL "**inpbox.del", ibox_def$, in_flg$, out_flg$
Where:
 ibox_def$ is the Input box control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**LSTBOX
List boxes

A list box is used to provide the user with a predetermined list of possible choices in a scrolling
window. The input returned from a list box can only be one of the items in the list.
Definition call sequence:

CALL "**lstbox.def", lbox_def$, ctl_val, lst_tbl${ALL}, col, line, width, height,
in_flg$, out_flg$

Where:
 lbox_def$ is the variable to receive List box control structure.
 ctl_val contains the CTL event to occur when mouse enters box.
 lst_tbl${ALL} contains the values to place in the list box.
 col contains the column to start list box
 line contains the line to start the list box
 width contains the width of the box. If omitted (or <3), this is set the length

of the largest item in the list plus two for the border, up to a
maximum of 40 (or the edge of the window).

 height contains the height of the box. If omitted (or <3), this is set to the
number of entries in the list plus two up to a maximum of 12 (or to
the bottom of window).

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Utilities and Subprograms Windows Development Kit

ProvideX 79

**LSTBOX – List Box (continued):

List box display updating:

CALL "**lstbox.dsp", lbox_def$, new_val$, lst_tbl${ALL}, reset_ind, in_flg$,
out_flg$

Where:
 lbox_def$ is the List box control structure.
 new_val$ contains the value to be highlighted within the list box.
 lst_tbl${ALL} contains the values to place in the box.
 reset_ind is an optional parameter that when set to non-zero causes the

complete contents of the list box need to be re-displayed.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
List box event processing call:

CALL "**lstbox.xeq", lbox_def$, new_val$, lst_tbl${ALL}, reset_ind, in_flg$,
out_flg$

Where:
 lbox_def$ is the List box control.
 new_val$ returns the value selected within list box.
 lst_tbl${ALL} contains the values to place in box.
 reset_ind is an optional parameter that should be set to non-zero if the

complete contents of the list box need to be re-displayed.
 in_flg$ contains input flags (Future).
 out_flg$ contains output flags. If the user chooses a selection using the

keyboard and presses ENTER, a flag of 'RET' is returned. A flag of
'MSE' is returned if the mouse is used.

List box delete:
CALL "**lstbox.del", lbox_def$, in_flg$, out_flg$

Where:
 lbox_def$ is the list box control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**MENU
Pull-down menus

These functions provide access to pull down menus. The menu is defined by the **MENU.DEF
subprogram. When a menu event is detected, **MENU.XEQ provides the menu interface and
returns the characters selected.
Example:
A typical menu would be defined as:

Windows Development Kit Utilities and Subprograms

80 ProvideX

**MENU – Pull-down menus (continued):

"[&File,&Edit,&Help],F:[&Open,&Save,E&Xit],E:[&Delete,&Insert]"

This results in a menu of "File Edit Help" across the top of the window with the first letter (the one
prefixed by &) as the access key. If "F" is entered, a pull down menu of "Open Save EXit" will
appear.

File Edit Help
 Open
 Save
 EXit

If Open is selected, the **MENU.XEQ routine returns "FO" for File/Open. If no menu was
selected, a Null string is returned.

A 'menu flag string' can be provided to contain the sequence:

 ,{code}+ indicates that the specified menu item is
 toggled ON.
 ,{code}- indicates that the specified menu item is
 not available.
Defining a menu:

CALL "**menu.def", menu_dta$, ctl_val, menu_flg$, in_flg$, out_flg$
Where:
 menu_dta$ contains the menu/sub-menu items. The selection letters are

prefixed by a '&'.
 ctl_val contains the CTL event to occur when mouse selects the menu

region.
 menu_flg$ contains the menu flag string (optional).

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Processing a menu event:

CALL "**menu.xeq", menu_dta$, menu_resp$, menu_flg$, in_flg$, out_flg$
Where:
 menu_dta$ contains the menu/sub-menu items. The selection letters are

prefixed by a '&'.
 menu_resp$ returns the code for a selected menu item.
 menu_flg$ contains the menu flag string (optional).
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Inserting a checkmark beside a menu selection:

CALL "**menu.on", menu_flg$, menu_req$, in_flg$, out_flg$

Utilities and Subprograms Windows Development Kit

ProvideX 81

**MENU – Pull-down menus (continued):

Where:
 menu_flg$ is the menu flag string to update.
 menu_req$ contains the menu code for checkmark.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Removing a checkmark from a menu selection:

CALL "**menu.off", menu_flg$, menu_req$, in_flg$, out_flg$
Where:
 menu_flg$ is the menu flag string to update.
 menu_req$ contains the menu code for checkmark.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Disabling a menu selection:

CALL "**menu.dis", menu_flg$, menu_req$, in_flg$, out_flg$
Where:
 menu_flg$ is the menu flag string to update.
 menu_req$ contains the menu code to disable.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Enabling a menu selection:

CALL "**menu.ena", menu_flg$, menu_req$, in_flg$, out_flg$
Where:
 menu_flg$ is the menu flag string to update.
 menu_req$ contains the menu code to enable.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**OPEN.FLE
Open File

This utility provides a Windows-like open file routine.
To invoke the Open File utility:

CALL "**open.fle", fle_val$, fle_pth$, fle_ttl$, typ_tbl${ALL}, in_flg$, out_flg$
Where:
 fle_val$ contains the default file name on entry, returns the selected file

name. If no file is selected, "" is returned.
 fle_pth$ contains the initial directory path.
 fle_ttl$ contains the window title (default is 'File Open').
 typ_tbl${ALL} is the table of descriptions and valid file name masks. (see below)

Windows Development Kit Utilities and Subprograms

82 ProvideX

**OPEN.FLE – Open file (continued):

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Each entry in the Table of Descriptions (typ_tbl${ALL}) must be in the following format:

 TYP_TBL$[X]="Description | Mask"
Where:
 Description is the text that is displayed in the window.
 | is the separator between the description and the mask.
 Mask are the filters used to identify the files associated with the

description. The standard '*' and '?' wild card characters can be
used.

 i.e. TYP_TBL$[1]="All files (*.*) |*.*"
 TYP_TBL$[2]="Batch files (*.bat)|*.bat"

Utilities and Subprograms Windows Development Kit

ProvideX 83

**OPTION.BOX
Option Box

Description:
This routine is used to display a message in a window and to allow the user to select from a
series of short (one word) options.

CALL "**option.box", yorn_resp$, opt_msg$, yorn_data$, in_flg$, out_flg$
Where:
 yorn_resp$ is the variable to receive the selection.
 opt_msg$ contains the message to display in the window. Multiple lines of

description may be used by inserting the SEP variable at the end of
each line.

 yorn_data$ is a string containing the options separated by commas. The
selection letters are to be prefixed by the & (ie. "&Yes,&No" or
"&OK").

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**PROMPT.BOX
Prompt Box

Description:
This routine displays a message in a window and prompts for an alphanumeric response.
Prompt boxes accept input wider than the actual screen by implementing a scrolling input field.
Define Calling sequence:

CALL "**prompt.box", desc$, fld_siz, resp$, in_flg$, out_flg$
Where:
 desc$ contains the text to display before the input field.
 fld_siz contains the maximum size of the input field.
 resp$ contains the initial value passed in and returns the result of the input.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Windows Development Kit Utilities and Subprograms

84 ProvideX

**VARBOX
Variable List boxes

Description:
A variable list box consists of an input field with a list box displayed below which contains a list of
the possible 'canned' input choices (such as a file name, etc..). The input returned from a
variable list box can be one of the entries from the list, or any input entered by the user.
To define a variable list box:

CALL "**varbox.def", vlst_def$, vlst_val$, ctl_val, vlst_tbl${ALL}, col, line, width,
height, in_flg$, out_flg$

Where:
 vlst_def$ is the variable to receive the list box control structure.
 vlst_val$ contains the initial value to display.
 ctl_val contains the CTL event to occur when mouse enters box or the input

field.
 vlst_tbl${ALL} contains the values to place in box.
 col contains the column to start the variable input.
 line contains the line to start the variable input.
 width contains the width of the input. The box size is set 2 characters

longer than this value to accommodate a space and drop activation
field following the input field.

 height contains the height of the box. If omitted (or <3) this is set to the
number of entries in the list plus two up to a maximum of 12 (or to
the bottom of window).

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

To process a Variable list box event:

CALL "**varbox.xeq", vlst_def$, vlst_val$, vlst_tbl${ALL}, vb_reset, in_flg$,
out_flg$

Where:
 vlst_def$ is the Variable list box control structure.
 vlst_val$ returns the value selected/entered.
 vlst_tbl${ALL} contains the values to place in box.
 lb_reset is an optional parameter that when set to non-zero causes the

complete contents of the list box to be re-displayed.
 in_flg$ contains input flags. To force execution of this routine, the flag

'+FOCUS' can be passed in through in_flg$. This is useful for
systems which do not employ a Mouse.

 out_flg$ receives output flags (Future).
To delete a Varbox:

CALL "**varbox.del", vlst_def$, in_flg$, out_flg$

Utilities and Subprograms Windows Development Kit

ProvideX 85

**VARBOX – Variable list boxes (continued):

Where:
 vlst_def$ is the Variable list box control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**VMOVE.CHK
Vertical movement processor

Description:
This is an internal routine used by the list box functions to intercept keyboard movement. It is
used to process cursor movement keys ↑, ↓, HOME, END, PGUP, and PGDN.
Calling sequence:

CALL "**vmove.chk", vb_new, vb_max, vb_bjmp, in_flg$, out_flg$
Where:
 vb_new on input, has the current value and returns the new value calculated.
 vb_max contains the largest value in the list
 vb_bjmp contains the amount to adjust the new value by when detecting a

PGUP or PGDN.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**VSCRBR
Vertical scroll Bar

A vertical scroll bar is used to allow the user to set a value or position. The list boxes use this
routine when there are more selections than will fit on one screen to indicate that more choices
exist. Typically, the scroll bar appears within a window region. When the mouse is activated
within the scroll bar region, a CTL value EVENT is initiated. The program must call
**VSCRBR.XEQ to handle this event and subsequently, **VSCRBR.DSP to update the scroll bar
display. **VSCRBR.DSP must be called to update the display whenever the value of the scroll
bar changes via other program functions (timer, file position, initial setting...).

These scroll bar functions should not be confused with the Window region vertical scroll bar
which appears to the right side of the current window.
Defining scroll bar:

CALL "**vscrbr.def", vscr_def$, ctl_val, col, line, width, height, in_flg$, out_flg$
Where:
 vscr_def$ is the variable to receive the Vertical scroll bar control structure.
 ctl_val contains the CTL event to occur when mouse enters scroll bar.
 col contains the column to start the scroll bar.

Windows Development Kit Utilities and Subprograms

86 ProvideX

**VSCRBR – Vertical scroll bar (continued):

 line contains the line to start the scroll bar.
 width contains the scroll bar width (default 1).
 height contains the scroll bar height (default is to bottom of current window).
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Updating scroll bar display:

CALL "**vscrbr.dsp", vscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Where:
 vscr_def$ is the scroll bar control structure.
 new_val contains the value within scroll bar (minimum value = 1).
 max_val contains the maximum value within scroll bar.
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed above/below current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Processing scroll bar event:

CALL "**vscrbr.xeq", vscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Where:
 vscr_def$ is the scroll bar control structure.
 new_val returns the value corresponding to the selected position within the

scroll bar. The scroll bar must be updated by calling
"**VSCRBR.DSP" after the value is returned and processed.
(minimum value = 1).

 max_val contains the maximum value within scroll bar.
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed above/below current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Deleting scroll bar:

CALL "**vscrbr.del", vscr_def$, in_flg$, out_flg$
Where:
 vscr_def$ is the scroll bar control structure.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Utilities and Subprograms Windows Development Kit

ProvideX 87

**WARN.BOX
Warning Box

Description:
This routine is used to display an Error or Warning message. It places the message in a window
on the screen and prompts for a response. The prompt selections passed in are typically Yes or
No.
Define Calling sequence:

CALL "**warn.box", yorn_resp$, err_msg$, yorn_data$, in_flg$, out_flg$
Where:
 yorn_resp$ returns the letter of the selected option
 err_msg$ contains the message to display in the window. Multiple lines of

description may be used by inserting the SEP variable at the end of
each line.

 yorn_data$ contains a string containing the options separated by commas. The
selection letters are to be prefixed by the & (ie. "&Yes,&No").

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**WHSCRL
Window Horizontal scroll Bar

A horizontal window scroll bar is used to represent a logical placement within a horizontally
scrollable data item such as a long line or record. It always appears on the bottom line (border)
of a window. When the mouse is activated within the scroll bar region, a CTL value EVENT is
initiated. The program must call **WHSCRL.XEQ to handle this event and subsequently
**WVSCRL.DSP to update the scroll bar display. **WVSCRL.DSP must be CALLed to update
the display whenever the value of the scroll bar changes via other program functions (timer, file
position, initial setting...).

CALL "**whscrl.def", hscr_def$, ctl_val, in_flg$, out_flg$
Where:
 hscr_def$ is the Variable to receive the control structure for the scroll bar.
 ctl_val contains the CTL event to occur when mouse enters scroll bar.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To update the scroll bar display:

CALL "**whscrl.dsp", hscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Windows Development Kit Utilities and Subprograms

88 ProvideX

**WHSCRL – Window horizontal scroll bar (continued):

Where:
 hscr_def$ is the Variable with the control structure for the scroll bar.
 new_val contains the value within scroll bar to be displayed (minimum value =

1).
 max_val contains the maximum value within scroll bar.
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed left/right of current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
To process scroll bar event:

CALL "**whscrl.xeq",, in_flg$, out_flg$
Where:
 hscr_def$ is the scroll bar control structure

 new_val returns the value corresponding to the selected position within the

scroll bar. The scroll bar must be updated by calling
"**WHSCRL.DSP" after the value is returned and processed.
(minimum value = 1).

 max_val contains the maximum value within the scroll bar.
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed left/right of current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

**WVSCRL
Window Vertical scroll Bar

A vertical window scroll bar is used to represent a position within the current window. It always
appears on the right border of the current window. When the mouse is activated within the scroll
bar region, a CTL value event is initiated. The program must call **WVSCRL.XEQ to handle this
event and then subsequently, **WVSCRL.DSP to update the scroll bar display. **WVSCRL.DSP
must be CALLed to update the display whenever the value of the scroll bar changes via other
program functions.

Defining scroll bar:

CALL "**wvscrl.def", vscr_def$, ctl_val, in_flg$, out_flg$
Where:
 vscr_def$ is the Variable to receive the control structure for the scroll bar.

Utilities and Subprograms Windows Development Kit

ProvideX 89

**WVSCRL – Window vertical scroll bar (continued):

 ctl_val contains the CTL event to occur when mouse enters scroll bar.
 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).
Updating display:

CALL "**wvscrl.dsp", vscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Where:
 vscr_def$ is the Variable with the control structure for the scroll bar.
 new_val contains the value within scroll bar to be displayed (1 = first value)
 max_val contains the maximum value within scroll bar
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed above/below current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ Additional input parameters. Since the scaled representation on the
bar can change, a value of 'SCALE_RESET' can be passed through
in_flg$ to force a recalculation and redisplay of the bar.

 out_flg$ receives output flags (Future).
Processing Scroll bar event:

CALL "**wvscrl.xeq", vscr_def$, new_val, max_val, big_jmp, sml_jmp, in_flg$,
out_flg$

Where:
 vscr_def$ is the scroll bar control structure.
 new_val returns the value corresponding to the selected position within the

scroll bar. The scroll bar must be updated by calling
"**WVSCRL.DSP" after the value is returned and processed.
(minimum value = 1).

 max_val contains the maximum value within scroll bar
 big_jmp contains the amount to increase/decrease for BIG Jump (mouse

pressed above/below current position). If < 1 or not specified, this
value defaults to max_val divided by # of entries in bar.

 sml_jmp contains the amount to increase/decrease for SMALL Jump (arrows
at either end of bar). If not specified or < 1, a value of 1 is used.

 in_flg$ contains input flags (Future).
 out_flg$ receives output flags (Future).

Utilities and Subprograms Index

ProvideX 91

Index

*

**BUTTON.xxx, 68–69
**CHKBOX.xxx, 69–70
**COMBOX.xxx, 71–72
**CTLBTN.xxx, 72–74
**DRPBOX.xxx, 74–75
**ERROR.BOX, 75
**HMOVE.CHK, 75–76
**INPBOX.xxx, 77–78
**LSTBOX.xxx, 78–79
**MENU.xxx, 79–81
**OPEN.FLE, 81–83
**OPTION.BOX, 83
**PROMPT.BOX, 83–84
**VSCRBR, 85–87
**WARN.BOX, 87
**WVSCRL.xxx, 88–91
*C, 2–3
*CHKKEY, 4
*CONTROL, 58, 59, 60
*DATE, 49–50
*DEV, 58–59
*E, 4–8
*ERROR, 59
*F, 8–9
*FI, 9
*FL.LST, 50
*FL.NME, 51
*FM, 10
*HELP, 59
*HELP.INF, 59
*HELP.PRG, 60
*HELP.PWD, 59, 60
*HELP.xx, 59–60
*KYBRD.CFG, 60–61
*KYBRD.STD, 60–61
*LEXDEF.xx, 61
*LEXEDIT, 11–12, 61
*LEXTBL.xx, 61

*MLFILE.xx, 62
*MSGUPD, 12–13
*OPTSEL, 51–52, 51–52, 51–52, 51–52, 51–

52, 51–52, 51–52
*PG.CNV, 52
*POPSEL, 52–53
*PR.ABT, 53
*PR.OPN, 54
*PR.SEL, 54
*PRMDEF.xx, 62
*QUERY, 62–63
*QUERY.DEF, 63
*SCR.SVE, 55
*SELECT, 55–56
*START.UP, 64
*TTY, 64–65
*U, 13–14
*UC, 14
*UCK, 15–16
*UCL, 16–18
*UCP, 18–19, 62
*UD, 19
*UDD, 19–20
*UDG, 20
*UDM, 21
*UDP, 21–22
*UDR, 22
*UDV, 23
*UF, 24
*UFA, 24
*UFAC, 25–27
*UFAM, 27–28
*UFAR, 28–29
*UFC, 29–30
*UFD, 30–31
*UFE, 31
*UFI, 31–32
*UFM, 32–34
*UFR, 35–36
*UFU, 36–38
*UFV, 38–39

Index Utilities and Subprograms

92 ProvideX

*UG, 39
*UGM, 39–40
*UGS, 40–41
*UP, 42
*UPB, 42–44
*UPC, 44–45
*UPD, 45
*UPL, 45–46
*UPM, 46–47
*UPR, 47
*UPS, 47–48
*VLDATE, 56–57

A

Abort print file, 53
ACTIVATE.PVX, 57
Activation file, 57

B

Boxes
combo, 71–72
drop, 74–75
error, 75
input, 77–78
list, 78–79
option, 83
prompt, 83–84
warning, 87

Bulk program scan/edit, 42–44
Buttons, 68–69
Buttons-Control, 72–74

C

Calculator, 2–3
Change

current directory, 20
max records, 27–28

Check Boxes, 69–70
Check file keys, 25–27
Clear file contents, 31
Combo Boxes, 71–72
Compare programs, 44–45
Configuration menu, 14
Configure keyboard, 15–16, 60–61
Convert program file, 52
Copy

file, 29–30

program, 52
Create

directory, 21
file, 32–34
program file, 46–47

Cross reference, 45–46

D

Date validation, 49–50
Define queries, 63
Delete

directory, 19–20
file, 30–31
program, 45

Device drivers, 58–59
Directory

change, 20
create, 21
delete, 19–20
list of files, 50
print, 21–22
rename, 22
utilities, 19
view, 23

Drop boxes, 74–75

E

Editor
multiple programs, 42–44
program, 4–8

Erase
file, 31

Error boxes, 75
Error handler, 59
Export - Spreadsheet, 40–41

F

File
admin menu, 24
change max records, 27–28
check keys, 15–16
copy, 29–30
create, 32–34
data erasure, 31
delete, 30–31
information, 23, 31–32
information display, 9

Utilities and Subprograms Index

ProvideX 93

keyboard config, 60–61
modify data, 10, 36–38
recovery, 4, 28–29
rename, 35–36
system messages, 62
temp file name, 51
update, 36–38
utility menu, 24
verify keys, 25–27
view, 38–39

File Open selector, 81–83
Files

directory list, 50
open list, 8–9

Flags
In and out, 68

G

General Utilities, 39

H

Help
field - display/edit, 59
password, 60
program display/edit, 60
text file, 59–60

HELP.xx, 59, 60
Home directory, 20
Horizontal

movement check, 75–76
Hot-Key interceptor, 58

I

In and Out Flags, 68
Information

file, 31–32
Input Boxes, 77–78
Input validate, 56–57
Intercept Hot-key, 58

K

Keyboard
config file, 60–61
configuration, 15–16, 64–65

Keys
verification, 25–27

L

Linkfile maintenance, 16–18
List

boxes, 78–79
select entry, 55–56

List program, 45–46

M

Maximum record count, 27–28
Menu, 79–81

configuration, 14
directory, 19
file admin, 24
file functions, 24
general utlities, 39
program utilities, 42
utilities, 13–14

Message
file update, 12–13
library, 62

Modify
data records, 36–38
file data, 10
parameters, 18–19
syntax tables, 11–12

Mortgage Calculations, 39–40
Movement check

horizontal, 75–76

N

Name for temporary file, 51

O

Object types, 65–68
On-line help, 59
On-line Query, 62–63
Open file - Selector, 81–83
Open file list, 8–9
Open printer, 54
Option boxes, 83
Option selector, 51–52, 51–52, 51–52, 51–53,

51–52, 51–52, 51–52

P

Parameter settings, 18–19, 62

Index Utilities and Subprograms

94 ProvideX

Password
help subsystem, 60

Popup option selector, 52–53
Print

directory, 21–22
screen, 58

Printer
abort, 53
open, 54
select, 54

Program
compare, 44–45
copy/convert, 52
create, 46–47
delete, 45
editor, 4–8
help text, 60
list, 45–46
rename, 47
scan/edit, 42–44
security, 47–48
utilities menu, 42

Prompt boxes, 83–84
ProvideX

activation, 57
initialization, 64

Q

Query
definition, 63
handler, 62–63

R

Range checking, 56–57
Recover file, 28–29
Rename

directory, 22
file, 35–36
program, 47

S

Sample error handler, 59
Save screen contents, 55
Scan programs, 42–44
Screen

print contents, 58
save contents, 55

Scroll bars
vertical, 85–87
window vertical, 88–91

Security password, 47–48
Select

from list, 55–56
option, 51–52, 51–52, 51–52, 51–53, 51–
52, 51–52, 51–52
printer, 54

Spreadsheet Export, 40–41
Syntax tables, 11–12, 61
System

parameters, 62
startup, 64

T

Tables for Windows functions, 68
Temporary file name, 51
Terminal keyboard map, 64–65
Tracing keys, 4

U

Update
file, 36–38

V

Validate
dates, 49–50
input, 56–57

Verify file keys, 25–27
Vertical

scroll bars, 85–87
View

directory, 23
file, 36–39

W

Warning boxes, 87
Window frame

vertical scroll bar, 88–91
Windows

object types, 65–68

	Utility Programs
	**
	*C
	*CHKKEY
	*E
	*F
	*FI
	*FM
	*LEXEDIT
	*MSGUPD
	*P
	*U
	*UC
	*UCK
	*UCL
	*UCP
	*UD
	*UDD
	*UDG
	*UDM
	*UDP
	*UDR
	*UDV
	*UF
	*UFA
	*UFAC
	*UFAM
	*UFAR
	*UFC
	*UFD
	*UFE
	*UFI
	*UFM
	*UFP
	*UFR
	*UFU
	*UFV
	*UG
	*UGM
	*UGS
	*UP
	*UPB
	*UPC
	*UPD
	*UPL
	*UPM
	*UPR
	*UPS

	Subprograms
	*DATE
	*FL.LST
	*FL.MTH
	*FL.NME
	*OPTSEL
	*PG.CNV
	*POPSEL
	*PR.ABT
	*PR.CLS
	*PR.GET
	*PR.OPN
	*PR.SEL
	*SCR.RST
	*SCR.SVE
	*SELECT
	*VLDATE

	System Programs/Files
	ACTIVATE.PVX
	*CONTROL
	*DEV
	*ERROR
	*HELP
	*HELP.xx
	*HELP.PRG
	*HELP.PWD
	*KYBRD.CFG/*KYBRD.STD
	*LEXTBL.xx/*LEXDEF.xx
	*MLFILE.xx
	*PRMDEF.xx
	*QUERY
	*QUERY.DEF
	*START.UP
	*TTY

	Windows Development Kit
	**BUTTON
	**CHKBOX
	**CHKLST
	**COMBOX
	**CTLBTN
	**DRPBOX
	**ERROR.BOX
	**HMOVE.CHK
	**HSCRBR
	**INPBOX
	**LSTBOX
	**MENU
	**OPEN.FLE
	**OPTION.BOX
	**PROMPT.BOX
	**VARBOX
	**VMOVE.CHK
	**VSCRBR
	**WARN.BOX
	**WHSCRL
	**WVSCRL

	msg1: Note: This document contains some incomplete and obsolete information. Please refer to the PVX website for the latest documentation, or contact Best Software Canada Ltd. for assistance.

